Perez-Barcenilla, SergioCearsolo, XabierAramburu, AmaiaCastano-Alvarez, RubenCastillo, Juan R.Gayoso Lopez, Jorge2024-08-202024-08-202024-01Perez-Barcenilla , S , Cearsolo , X , Aramburu , A , Castano-Alvarez , R , Castillo , J R & Gayoso Lopez , J 2024 , ' Applicability of a Material Constitutive Model Based on a Transversely Isotropic Behaviour for the Prediction of the Mechanical Performance of Multi Jet Fusion Printed Polyamide 12 Parts ' , Polymers , vol. 16 , no. 1 , 56 . https://doi.org/10.3390/polym160100562073-4360https://hdl.handle.net/11556/4740Publisher Copyright: © 2023 by the authors.Multi Jet Fusion (MJF), an innovative additive manufacturing (AM) technique in the field of Powder Bed Fusion (PBF) developed by Hewlett-Packard (HP) Inc. (Palo Alto, CA, USA), has been designed to produce polymer parts using thermoplastic-based powders, primarily focusing on polyamide 12 (PA12). Employing a layer-by-layer approach, MJF enables the rapid production of intricate components, reportedly up to 10 times faster than other AM processes. While the mechanical properties of MJF-printed PA12 and the impact of build orientation on those properties have already been explored in various studies, less attention has been given to the mechanical performance of MJF-printed PA12 components under complex loads and accurate predictive models. This contribution aims to assess the applicability of a constitutive model based on a transversely isotropic behaviour under linear elastic deformation for predicting the mechanical response of MJF-printed PA12 parts through numerical simulations. Both uniaxial tensile and shear tests were carried out on printed samples to determine the elastic properties of MJF-printed PA12, with additional testing on printed complex handle-shaped parts. Finally, a numerical model was developed to simulate the mechanical tests of the handles. Results from tests on printed samples showed that MJF-printed PA12, to some extent, behaves as a transversely isotropic material. Furthermore, using a constitutive model that assumes a transversely isotropic behaviour under linear elastic deformation for predicting the mechanical response of MJF-printed PA12 parts in numerical simulations could be a reasonable approach, provided that the material stress levels remain within the linear range. However, the particularities of the stress-strain curve of MJF-printed PA12 complicate determining the elasticity-to-plasticity transition point.enginfo:eu-repo/semantics/openAccessApplicability of a Material Constitutive Model Based on a Transversely Isotropic Behaviour for the Prediction of the Mechanical Performance of Multi Jet Fusion Printed Polyamide 12 Partsjournal article10.3390/polym16010056additive manufacturinganisotropymaterial constitutive modelsmechanical propertiesmulti jet fusionpolyamide 12General ChemistryPolymers and PlasticsSDG 9 - Industry, Innovation, and Infrastructurehttp://www.scopus.com/inward/record.url?scp=85181851069&partnerID=8YFLogxK