Reverte, EduardoCornide, JuanLagos, Miguel A.Campos, MónicaAlvaredo, Paula2021-05-21Reverte , E , Cornide , J , Lagos , M A , Campos , M & Alvaredo , P 2021 , ' Microstructure Evolution in a Fast and Ultrafast Sintered Non-Equiatomic Al/Cu HEA ' , Metals , vol. 11 , no. 6 , 848 , pp. 848 . https://doi.org/10.3390/met110608482075-4701researchoutputwizard: 11556/1140Publisher Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland.One of the attractive characteristics of high entropy alloys (HEAs) is the ability to tailor their composition to obtain specific microstructures and properties by adjusting the stoichiometry to obtain a body-centered cubic (BCC) or face-centered cubic (FCC) structure. Thus, in this work, the target composition of an alloy of the FeCrCoNi family has been modified by adjusting the Al/Cu ratio in order to obtain a BCC crystalline structure. However, processing conditions always play a key role in the final microstructure and, therefore, in this work, the microstructure evolution of FeCrCoNiAl1.8Cu0.5 HEA sintered by different powder metallurgy (PM) techniques has been investigated. The techniques used range from the conventional PM sintering route, that uses high heating rates and sintering times, going through a fast sintering technique such as spark plasma sintering (SPS) to the novel and promising ultrafast sintering technique electrical resistance sintering (ERS). Results show that the increase in the processing time favours the separation of phases and the segregation of elements, which is reflected in a substantial change in the hardness of the alloy. In conclusion, the ERS technique is presented as a very promising consolidation technique for HEA.16742728enginfo:eu-repo/semantics/openAccessMicrostructure Evolution in a Fast and Ultrafast Sintered Non-Equiatomic Al/Cu HEAjournal article10.3390/met11060848High entropy alloysMicrostructureOrdered body-centered cubic (BCC/B2)Cr–Co–Fe–Ni–Al–CuPowder metallurgySpark plasma sinteringElectrical resistance sinteringUltrafast sintering techniqueHigh entropy alloysMicrostructureOrdered body-centered cubic (BCC/B2)Cr–Co–Fe–Ni–Al–CuPowder metallurgySpark plasma sinteringElectrical resistance sinteringUltrafast sintering techniqueCr–Co– Fe–Ni–Al–CuGeneral Materials ScienceMetals and AlloysFunding InfoThe authors gratefully acknowledge the financial support of MAT4.0-CM project funded by Madrid region under programme S2018/NMT-4381. J. Cornide also acknowledges funding from the Spanish Ministry of Science and Innovation (IJCI-2017-31348).The authors gratefully acknowledge the financial support of MAT4.0-CM project funded by Madrid region under programme S2018/NMT-4381. J. Cornide also acknowledges funding from the Spanish Ministry of Science and Innovation (IJCI-2017-31348).http://www.scopus.com/inward/record.url?scp=85106047050&partnerID=8YFLogxK