Birbaumer, NielsMurguialday, Ander RamosCohen, Leonardo2024-07-242024-07-242008-12Birbaumer , N , Murguialday , A R & Cohen , L 2008 , ' Brain-computer interface in paralysis ' , Current Opinion in Neurology , vol. 21 , no. 6 , pp. 634-638 . https://doi.org/10.1097/WCO.0b013e328315ee2d1350-7540https://hdl.handle.net/11556/3635Purpose of review: Communication with patients suffering from locked-in syndrome and other forms of paralysis is an unsolved challenge. Movement restoration for patients with chronic stroke or other brain damage also remains a therapeutic problem and available treatments do not offer significant improvements. This review considers recent research in brain-computer interfaces (BCIs) as promising solutions to these challenges. Recent findings: Experimentation with nonhuman primates suggests that intentional goal directed movements of the upper limbs can be reconstructed and transmitted to external manipulandum or robotic devices controlled from a relatively small number of microelectrodes implanted into movement-relevant brain areas after some training, opening the door for the development of BCI or brain-machine interfaces in humans. Although noninvasive BCIs using electroencephalographic recordings or event-related-brain-potentials in healthy individuals and patients with amyotrophic lateral sclerosis or stroke can transmit up to 80 bits/min of information, the use of BCIs - invasive or noninvasive - in severely or totally paralyzed patients has met some unforeseen difficulties. Summary: Invasive and noninvasive BCIs using recordings from nerve cells, large neuronal pools such as electrocorticogram and electroencephalography, or blood flow based measures such as functional magnetic resonance imaging and near-infrared spectroscopy show potential for communication in locked-in syndrome and movement restoration in chronic stroke, but controlled phase III clinical trials with larger populations of severely disturbed patients are urgently needed.5enginfo:eu-repo/semantics/restrictedAccessBrain-computer interface in paralysisjournal article10.1097/WCO.0b013e328315ee2dAmyotrophic lateral sclerosisMovement restorationStrokeNeurologyNeurology (clinical)SDG 3 - Good Health and Well-beinghttp://www.scopus.com/inward/record.url?scp=56749127998&partnerID=8YFLogxK