RT Journal Article T1 Effect of sweep gas on hydrogen permeation of supported Pd membranes: Experimental and modeling A1 Nordio, Maria A1 Soresi, Serena A1 Manzolini, Giampaolo A1 Melendez, Jon A1 Van Sint Annaland, Martin A1 Pacheco Tanaka, D. Alfredo A1 Gallucci, Fausto AB Membrane reactor processes are being increasingly proposed as an attractive solution for pure hydrogen production due to the possibility to integrate production and separation inside a single reactor vessel. High hydrogen purity can be obtained through dense metallic membranes, especially palladium and its alloys, which are highly selective to hydrogen. The use of thin membranes seems to be a good industrial solution in order to increase the hydrogen flux while reducing the cost of materials. Typically, the diffusion through the membrane layer is the rate-limiting step and the hydrogen permeation through the membrane can be described by the Sieverts’ law but, when the membrane becomes thinner, the diffusion through the membrane bulk becomes less determinant and other mass transfer limitations might limit the permeation rate. Another way to increase the hydrogen flux at a given feed pressure, is to increase the driving force of the process by feeding a sweep gas in the permeate side. This effect can however be significantly reduced if mass transfer limitations in the permeate side exist. The aim of this work is to study the mass transfer limitation that occurs in the permeate side in presence of sweep gas. A complete model for the hydrogen permeation through Pd–Ag membranes has been developed, adding the effects of concentration polarization in retentate and permeate side and the presence of the porous support using the dusty gas model equation, which combines Knudsen diffusion, viscous flow and binary diffusion. By studying the influence of the sweep gas it has been observed that the reduction of the driving force is due to the stagnant sweep gas in the support pores while the concentration polarization in the permeate is negligible. SN 0360-3199 YR 2019 FD 2019-02-08 LK https://hdl.handle.net/11556/4596 UL https://hdl.handle.net/11556/4596 LA eng NO Nordio , M , Soresi , S , Manzolini , G , Melendez , J , Van Sint Annaland , M , Pacheco Tanaka , D A & Gallucci , F 2019 , ' Effect of sweep gas on hydrogen permeation of supported Pd membranes : Experimental and modeling ' , International Journal of Hydrogen Energy , vol. 44 , no. 8 , pp. 4228-4239 . https://doi.org/10.1016/j.ijhydene.2018.12.137 NO Publisher Copyright: © 2018 Hydrogen Energy Publications LLC NO Image 1 This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking under grant agreement No 700355 . This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation. DS TECNALIA Publications RD 30 jul 2024