RT Journal Article T1 Neurophysiology of robot-mediated training and therapy: A perspective for future use in clinical populations A1 Turner, Duncan L. A1 Ramos-Murguialday, Ander A1 Birbaumer, Niels A1 Hoffmann, Ulrich A1 Luft, Andreas AB The recovery of functional movements following injury to the central nervous system (CNS) is multifaceted and is accompanied by processes occurring in the injured and non-injured hemispheres of the brain or above/below a spinal cord lesion. The changes in the CNS are the consequence of functional and structural processes collectively termed neuroplasticity and these may occur spontaneously and/or be induced by movement practice. The neurophysiological mechanisms underlying such brain plasticity may take different forms in different types of injury, for example stroke vs. spinal cord injury (SCI). Recovery of movement can be enhanced by intensive, repetitive, variable, and rewarding motor practice. To this end, robots that enable or facilitate repetitive movements have been developed to assist recovery and rehabilitation. Here, we suggest that some elements of robot-mediated training such as assistance and perturbation may have the potential to enhance neuroplasticity. Together the elemental components for developing integrated robot-mediated training protocols may form part of a neurorehabilitation framework alongside those methods already employed by therapists. Robots could thus open up a wider choice of options for delivering movement rehabilitation grounded on the principles underpinning neuroplasticity in the human CNS. SN 1664-2295 YR 2013 FD 2013 LK https://hdl.handle.net/11556/3932 UL https://hdl.handle.net/11556/3932 LA eng NO Turner , D L , Ramos-Murguialday , A , Birbaumer , N , Hoffmann , U & Luft , A 2013 , ' Neurophysiology of robot-mediated training and therapy : A perspective for future use in clinical populations ' , Frontiers in Neurology , vol. 4 NOV , 184 . https://doi.org/10.3389/fneur.2013.00184 DS TECNALIA Publications RD 26 jul 2024