RT Journal Article T1 Compatibility of container materials for Concentrated Solar Power with a solar salt and alumina based nanofluid: A study under dynamic conditions: A study under dynamic conditions A1 Nieto-Maestre, Javier A1 Muñoz-Sánchez, Belén A1 Fernández, Angel G. A1 Faik, Abdessamad A1 Grosu, Yaroslav A1 García-Romero, Ana AB Thermal energy storage (TES) is an efficient solution for improving the dispatchability of Concentrated Solar Power (CSP) plants. A system, consisting of two tanks with Solar Salt (NaNO3 60% wt. and KNO3 40% wt.) is commonly used. However, the investment cost of this technology is very high, due to the huge amount of salts required (thousands of tons). A pronounced interest is evident for improving the thermophysical properties of molten salts by adding small amounts of nanoparticles in order to reduce the mass of molten salts at CSP. At the moment, the effect of nanoparticle addition on corrosion of container materials is poorly explored. In particular, there are no works regarding the dynamic effect of nanoparticles on the corrosivity of molten salts. In this work we present first ever dynamic corrosion tests for Solar salt doped with alumina nanoparticles (1% wt.). Carbon Steel A516 and SS347, used in double-tank system, were tested. Corrosion rates were 94.8 μm yr−1 and negligible respectively (1000 h, 385 °C). Detailed examination of construction materials revealed incorporation of nanoparticles into the corrosion layer and considerably lower corrosion rate as compared to the previously reported work on the nanoparticles-free Solar salt. SN 0960-1481 YR 2020 FD 2020-02 LA eng NO Nieto-Maestre , J , Muñoz-Sánchez , B , Fernández , A G , Faik , A , Grosu , Y & García-Romero , A 2020 , ' Compatibility of container materials for Concentrated Solar Power with a solar salt and alumina based nanofluid: A study under dynamic conditions : A study under dynamic conditions ' , Renewable Energy , vol. 146 , pp. 384-396 . https://doi.org/10.1016/j.renene.2019.06.145 NO Publisher Copyright: © 2019 DS TECNALIA Publications RD 1 jul 2024