RT Journal Article T1 Effect of high content nanohydroxyapatite composite scaffolds prepared via melt extrusion additive manufacturing on the osteogenic differentiation of human mesenchymal stromal cells A1 Cámara-Torres, Maria A1 Sinha, Ravi A1 Sanchez, Alberto A1 Habibovic, Pamela A1 Patelli, Alessandro A1 Mota, Carlos A1 Moroni, Lorenzo AB The field of bone tissue engineering seeks to mimic the bone extracellular matrix composition, balancing the organic and inorganic components. In this regard, additive manufacturing (AM) of high content calcium phosphate (CaP)-polymer composites holds great promise towards the design of bioactive scaffolds. Yet, the biological performance of such scaffolds is still poorly characterized. In this study, melt extrusion AM (ME-AM) was used to fabricate poly(ethylene oxide terephthalate)/poly(butylene terephthalate) (PEOT/PBT)-nanohydroxyapatite (nHA) scaffolds with up to 45 wt% nHA, which presented significantly enhanced compressive mechanical properties, to evaluate their in vitro osteogenic potential as a function of nHA content. While osteogenic gene upregulation and matrix mineralization were observed on all scaffold types when cultured in osteogenic media, human mesenchymal stromal cells did not present an explicitly clear osteogenic phenotype, within the evaluated timeframe, in basic media cultures (i.e. without osteogenic factors). Yet, due to the adsorption of calcium and inorganic phosphate ions from cell culture media and simulated body fluid, the formation of a CaP layer was observed on PEOT/PBT-nHA 45 wt% scaffolds, which is hypothesized to account for their bone forming ability in the long term in vitro, and osteoconductivity in vivo. SN 2772-9508 YR 2022 FD 2022-06 LA eng NO Cámara-Torres , M , Sinha , R , Sanchez , A , Habibovic , P , Patelli , A , Mota , C & Moroni , L 2022 , ' Effect of high content nanohydroxyapatite composite scaffolds prepared via melt extrusion additive manufacturing on the osteogenic differentiation of human mesenchymal stromal cells ' , Biomaterials Advances , vol. 137 , 212833 , pp. 212833 . https://doi.org/10.1016/j.bioadv.2022.212833 NO Publisher Copyright: © 2022 The Authors DS TECNALIA Publications RD 3 jul 2024