RT Journal Article T1 Characterization of a Medium Mn-Ni Steel Q&P Treated by a High Partitioning Temperature Cycle A1 Arribas, Maribel A1 Del Molino, Eider A1 Gutiérrez, Teresa A1 Arlazarov, Artem A1 Martin, David A1 De Caro, Daniele A1 Ayenampudi, Sudhindra A1 Santofimia, Maria J. AB In this work, a medium Mn-Ni steel was treated through Quenching and Partitioning (Q&P) with a partitioning temperature (PT) of 650 °C, which corresponded to the start of the austenite reverse transformation (ART) phenomenon. The influence of the quenching temperature (QT) and partitioning time (Pt) on austenite stabilization and mechanical properties was investigated. A strong influence of the quenching temperature was observed. Results were compared with those obtained after a Q&P treatment with 400 °C partitioning temperature. The Q&P cycle with quenching to room temperature and a high partitioning temperature produced a steel with a high retained austenite (RA) volume fraction and exceptional strength–ductility balance. The analysis of the mechanical stability of the retained austenite revealed a significant stress-induced transformation. Nevertheless, the austenite, which was stable at stresses above the yield stress, provided significant TRIP-assisted ductility. Bending, hole expansion and post-stamping properties were also evaluated for the most promising conditions. SN 2075-4701 YR 2022 FD 2022-03-13 LA eng NO Arribas , M , Del Molino , E , Gutiérrez , T , Arlazarov , A , Martin , D , De Caro , D , Ayenampudi , S & Santofimia , M J 2022 , ' Characterization of a Medium Mn-Ni Steel Q &P Treated by a High Partitioning Temperature Cycle ' , Metals , vol. 12 , no. 3 , 483 , pp. 483 . https://doi.org/10.3390/met12030483 NO Publisher Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. DS TECNALIA Publications RD 3 jul 2024