RT Journal Article T1 Direct Fabrication of a Copper RTD over a Ceramic-Coated Stainless-Steel Tube by Combination of Magnetron Sputtering and Sol–Gel Techniques A1 Bikarregi, Aitor A1 Dominguez, Santiago A1 Brizuela, Marta A1 López, Alejandra A1 Suarez-Vega, Ana A1 Agustín-Sáenz, Cecilia A1 Presa, Micael A1 López, Gabriel A. AB Reducing the economic and environmental impact of industrial process may be achieved by the smartisation of different components. In this work, tube smartisation is presented via direct fabrication of a copper (Cu)-based resistive temperature detector (RTD) on their outer surfaces. The testing was carried out between room temperature and 250 °C. For this purpose, copper depositions were studied using mid-frequency (MF) and high-power impulse magnetron sputtering (HiPIMS). Stainless steel tubes with an outside inert ceramic coating were used after giving them a shot blasting treatment. The Cu deposition was performed at around 425 °C to improve adhesion as well as the electrical properties of the sensor. To generate the pattern of the Cu RTD, a photolithography process was carried out. The RTD was then protected from external degradation by a silicon oxide film deposited over it by means of two different techniques: sol–gel dipping technique and reactive magnetron sputtering. For the electrical characterisation of the sensor, an ad hoc test bench was used, based on the internal heating and the external temperature measurement with a thermographic camera. The results confirm the linearity (R2 > 0.999) and repeatability in the electrical properties of the copper RTD (confidence interval < 0.0005). SN 1424-8220 YR 2023 FD 2023-06 LA eng NO Bikarregi , A , Dominguez , S , Brizuela , M , López , A , Suarez-Vega , A , Agustín-Sáenz , C , Presa , M & López , G A 2023 , ' Direct Fabrication of a Copper RTD over a Ceramic-Coated Stainless-Steel Tube by Combination of Magnetron Sputtering and Sol–Gel Techniques ' , Sensors , vol. 23 , no. 12 , 5442 . https://doi.org/10.3390/s23125442 NO Publisher Copyright: © 2023 by the authors. NO This work was carried out within the framework of the Smart Oil & Gas project (project No. ZE-2019/00025) and was funded by the HAZITEK business R & D support aid program, action co-financed by the Basque government and the European Union through the European Regional Development Fund 2014–2020 (ERDF). Additionally, the project has obtained financing from the Basque Government: Project No. IT-1714-22. DS TECNALIA Publications RD 30 jul 2024