RT Journal Article T1 Development and synchronisation of a physics-based model for heating, ventilation and air conditioning system integrated into a hybrid model A1 Gálvez, Antonio A1 Seneviratne, Dammika A1 Galar, Diego AB This paper proposes a physics-based model which is part of a hybrid model (HyM). The physics-based model is developed for a heating, ventilation, and air conditioning (HVAC) system installed in a passenger train carriage. This model will be used to generate data for building a data-driven mode. Thus, the combination of these two models provides the hybrid model-based approach (HyMAs). The physics-based model of the HVAC system is divided into four principal parts: cooling subsystems, heating subsystems, ventilation subsystems, and vehicle thermal networking. First, the subsystems are modelled, considering the sensors embedded in the real system. Next, the model is synchronised with the real system to give better simulation results and validate the model. The cooling subsystem, heating subsystem and ventilation subsystem are validated with the acceptable sum square error (SSE) results. Second, the new virtual sensors are defined in the model, and their value to future research is suggested. SN 2515-0464 YR 2021 FD 2021 LA eng NO Gálvez , A , Seneviratne , D & Galar , D 2021 , ' Development and synchronisation of a physics-based model for heating, ventilation and air conditioning system integrated into a hybrid model ' , International Journal of Hydromechatronics , vol. 4 , no. 3 , pp. 230-258 . https://doi.org/10.1504/ijhm.2021.118005 NO Publisher Copyright: Copyright © 2021 Inderscience Enterprises Ltd. DS TECNALIA Publications RD 1 sept 2024