RT Journal Article T1 Decellularization of xenografted tumors provides cell-specific in vitro 3D environment A1 Iazzolino, Gaia A1 Mendibil, Unai A1 Arnaiz, Blanca A1 Ruiz-de-Angulo, Ane A1 Azkargorta, Mikel A1 Uribe, Kepa B. A1 Khatami, Neda A1 Elortza, Felix A1 Olalde, Beatriz A1 Gomez-Vallejo, Vanessa A1 Llop, Jordi A1 Abarrategi, Ander AB In vitro cell culture studies are common in the cancer research field, and reliable biomimetic 3D models are needed to ensure physiological relevance. In this manuscript, we hypothesized that decellularized xenograft tumors can serve as an optimal 3D substrate to generate a top-down approach for in vitro tumor modeling. Multiple tumor cell lines were xenografted and the formed solid tumors were recovered for their decellularization by several techniques and further characterization by histology and proteomics techniques. Selected decellularized tumor xenograft samples were seeded with the HCC1806 human triple-negative breast cancer (TNBC) basal-like subtype cell line, and cell behavior was compared among them and with other control 2D and 3D cell culture methods. A soft treatment using Freeze-EDTA-DNAse allows proper decellularization of xenografted tumor samples. Interestingly, proteomic data show that samples decellularized from TNBC basal-like subtype xenograft models had different extracellular matrix (ECM) compositions compared to the rest of the xenograft tumors tested. The in vitro recellularization of decellularized ECM (dECM) yields tumor-type–specific cell behavior in the TNBC context. Data show that dECM derived from xenograft tumors is a feasible substrate for reseeding purposes, thereby promoting tumor-type–specific cell behavior. These data serve as a proof-of-concept for further potential generation of patient-specific in vitro research models. SN 2234-943X YR 2022 FD 2022-08-18 LA eng NO Iazzolino , G , Mendibil , U , Arnaiz , B , Ruiz-de-Angulo , A , Azkargorta , M , Uribe , K B , Khatami , N , Elortza , F , Olalde , B , Gomez-Vallejo , V , Llop , J & Abarrategi , A 2022 , ' Decellularization of xenografted tumors provides cell-specific in vitro 3D environment ' , Frontiers in Oncology , vol. 12 , 956940 , pp. 956940 . https://doi.org/10.3389/fonc.2022.956940 NO Publisher Copyright: Copyright © 2022 Iazzolino, Mendibil, Arnaiz, Ruiz-de-Angulo, Azkargorta, Uribe, Khatami, Elortza, Olalde, Gomez-Vallejo, Llop and Abarrategi. DS TECNALIA Publications RD 1 jul 2024