RT Journal Article T1 ERD-based online brain-machine interfaces (BMI) in the context of neurorehabilitation: Optimizing BMI learning and performance A1 Soekadar, Surjo R. A1 Witkowski, Matthias A1 Mellinger, Jürgen A1 Ramos, Ander A1 Birbaumer, Niels A1 Cohen, Leonardo G. AB Event-related desynchronization (ERD) of sensori-motor rhythms (SMR) can be used for online brain-machine interface (BMI) control, but yields challenges related to the stability of ERD and feedback strategy to optimize BMI learning. Here, we compared two approaches to this challenge in 20 right-handed healthy subjects (HS, five sessions each, S1-S5) and four stroke patients (SP, 15 sessions each, S1-S15). ERD was recorded from a 275-sensor MEG system. During daily training, motor imagery-induced ERD led to visual and proprioceptive feedback delivered through an orthotic device attached to the subjects' hand and fingers. Group A trained with a heterogeneous reference value (RV) for ERD detection with binary feedback and Group B with a homogenous RV and graded feedback (10 HS and 2 SP in each group). HS in Group B showed better BMI performance than Group A (p < 0.001) and improved BMI control from S1 to S5 ( p=0.012) while Group A did not. In spite of the small n, SP in Group B showed a trend for a higher BMI performance (p = 0.06) and learning was significantly better (p < 0.05). Using a homogeneous RV and graded feedback led to improved modulation of ipsilesional activity resulting in superior BMI learning relative to use of a heterogeneous RV and binary feedback. SN 1534-4320 YR 2011 FD 2011-10 LK https://hdl.handle.net/11556/4051 UL https://hdl.handle.net/11556/4051 LA eng NO Soekadar , S R , Witkowski , M , Mellinger , J , Ramos , A , Birbaumer , N & Cohen , L G 2011 , ' ERD-based online brain-machine interfaces (BMI) in the context of neurorehabilitation : Optimizing BMI learning and performance ' , IEEE Transactions on Neural Systems and Rehabilitation Engineering , vol. 19 , no. 5 , 6035989 , pp. 542-549 . https://doi.org/10.1109/TNSRE.2011.2166809 NO was supported by the Intramural Research Program (IRP) of the National In-chronization (ERD) or synchronization (ERS) into signals that Health(NIH),theGermanFederalMinistryofEducationandResearch(BMBFstituteofNeurologicalDisordersandStroke(NINDS),NationalInstituesof control external devices [2], [3]. ERD/ERS offers quantification #01GQ0831)andtheDeutscheForschungsgemeinschaft(DFG).Theworkof of stimulus-locked brain activity e.g., during motor imagery, M. Witkowski was supported by the IRP of the NINDS/NIH, the DFG and the compared to reference conditions (RC). Easiness of use made BMBF(01GQ0831).TheworkofN.BirbaumerwassupportedbytheBMBF SMR-ERD, which reflects processing within the sensorimotor theNINDS/NIHandtheCenterforNeuroscienceandRegenerativeMedicine,(01GQ0831)andtheDFG.TheworkofL.G.CohenissupportedbytheIRPof cortex [4], an ideal candidate to drive online BMI systems in UniformedServicesUniversityofHealthSciences,Bethesda,MD. the context of neurorehabilitation [5]. DS TECNALIA Publications RD 26 jul 2024