Implementable hybrid quantum ant colony optimization algorithm

dc.contributor.authorde Andoin, M. Garcia
dc.contributor.authorEchanobe, J.
dc.contributor.institutionTecnalia Research & Innovation
dc.date.issued2022-06-17
dc.description.abstractWe propose a new hybrid quantum algorithm based on the classical Ant Colony Optimization algorithm to produce approximate solutions for NP-hard problems, in particular optimization problems. First, we discuss some previously proposed Quantum Ant Colony Optimization algorithms, and based on them, we develop an improved algorithm that can be truly implemented on near-term quantum computers. Our iterative algorithm codifies only the information about the pheromones and the exploration parameter in the quantum state, while subrogating the calculation of the numerical result to a classical computer. A new guided exploration strategy is used in order to take advantage of the quantum computation power and generate new possible solutions as a superposition of states. This approach is specially useful to solve constrained optimization problems, where we can implement efficiently the exploration of new paths without having to check the correspondence of a path to a solution before the measurement of the state. As an example of a NP-hard problem, we choose to solve the Quadratic Assignment Problem. The benchmarks made by simulating the noiseless quantum circuit and the experiments made on IBM quantum computers show the validity of the algorithmen
dc.description.statusPeer reviewed
dc.format.extent1769870
dc.identifier.citationde Andoin , M G & Echanobe , J 2022 , ' Implementable hybrid quantum ant colony optimization algorithm ' , Quantum Machine Intelligence , vol. 4 , no. 2 . https://doi.org/10.1007/s42484-022-00065-1
dc.identifier.doi10.1007/s42484-022-00065-1
dc.identifier.issn2524-4906
dc.identifier.otherresearchoutputwizard: 11556/1392
dc.language.isoeng
dc.relation.ispartofQuantum Machine Intelligence
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subject.keywordsQuantum computing
dc.subject.keywordsHybrid quantum algorithm
dc.subject.keywordsQuantum ant colony optimization
dc.subject.keywordsAnt colony optimization
dc.subject.keywordsQuadratic assignment problem
dc.subject.keywordsQuantum computing
dc.subject.keywordsHybrid quantum algorithm
dc.subject.keywordsQuantum ant colony optimization
dc.subject.keywordsAnt colony optimization
dc.subject.keywordsQuadratic assignment problem
dc.subject.keywordsFunding Info
dc.subject.keywordsOpen Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. _x000D_This received support from Tecnalia and the University of the Basque Country (UPV-EHU) 2021 PIF contract call. _x000D_Mikel Garcia de Andoin acknowledges funding from the QUANTEK project (ELKARTEK program from the Basque_x000D_Government, expedient no. KK-2021/00070).
dc.subject.keywordsOpen Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. _x000D_ This received support from Tecnalia and the University of the Basque Country (UPV-EHU) 2021 PIF contract call. _x000D_ Mikel Garcia de Andoin acknowledges funding from the QUANTEK project (ELKARTEK program from the Basque_x000D_ Government, expedient no. KK-2021/00070).
dc.titleImplementable hybrid quantum ant colony optimization algorithmen
dc.typejournal article
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Andoin-Echanobe2022_Article_ImplementableHybridQuantumAntC.pdf
Size:
1.69 MB
Format:
Adobe Portable Document Format