Geometrical model and strategy in single and multilayer structures deposited by powder-fed Directed Energy Deposition

Loading...
Thumbnail Image
Identifiers
Publication date
2020
Advisors
Journal Title
Journal ISSN
Volume Title
Publisher
Citations
Google Scholar
Export
Research Projects
Organizational Units
Journal Issue
Abstract
This work presents a geometrical model of coatings fabricated by powder-fed Directed Energy Deposition (DED) and defines guidelines and manufacturing strategies for multilayered structures based on the geometrical model results. This model obtains as output both the overlapped clad geometry and the dilution area of the coating at different input parameters and defines the strategy of multi-layer structures. The results of this work validate the model that comes in handy: a) To understand the influence of each parameter and the single clad geometry when fabricating coatings and structures; b) To select the parameters depending on the requirements of the coating like effective thickness and dilution; c) To detect lack of fusion with the substrate due to an excessive overlap percentage; d) To select the deposition strategy and the tool path for additive manufacturing; e) To select the subsequent machining strategy based on the predicted geometry of the model.
Description
The authors acknowledge support from the European Commission through the project "PARADDISE: a Productive, Affordable and Reliable solution for large scale manufacturing of metallic components by combining laser-based Additive and Subtractive processes with high Efficiency” (Grant Agreement 723440), an initiative of the Public-Private Partnership “Photonics and Factories of the Future”. The authors also acknowledge support from the European Institute of Innovation & Technology (EIT) through the project "DEDALUS: Directed Energy Deposition machines with integrated process ALgorithms Under dedicated monitoring and control System” (ID 20094), an initiative of the EIT Manufacturing. Finally, the authors acknowledge the vice-counseling of technology, innovation and competitiveness of the Basque Country for support of the project “PROCODA: Procesos de alto valor basados en el conocimiento y los datos” (KK2019/00004) within Elkartek 2019 and the project “ADDISEND: cooperación cientifica en fabricación aditiva para un control robusto de la cadena de valor” (kk2018/00115).
Keywords
Directed Energy Deposition , Powder-fed , Coatings , Multilayer Structure , Geometrical model , Deposition Strategy , Ni-based , Alloy 718 , Directed Energy Deposition , Powder-fed , Coatings , Multilayer Structure , Geometrical model , Deposition Strategy , Ni-based , Alloy 718 , Control and Systems Engineering , Industrial and Manufacturing Engineering , SDG 9 - Industry, Innovation, and Infrastructure , Project ID , info:eu-repo/grantAgreement/EC/H2020/723440/EU/A Productive, Affordable and Reliable solution for large scale manufacturing of metallic components by combining laser-based ADDItive and Subtractive processes with high Efficiency/PARADDISE , info:eu-repo/grantAgreement/EC/H2020/723440/EU/A Productive, Affordable and Reliable solution for large scale manufacturing of metallic components by combining laser-based ADDItive and Subtractive processes with high Efficiency/PARADDISE , Funding Info , The authors acknowledge support from the European Commission through the project "PARADDISE: a Productive, Affordable and Reliable solution for large scale manufacturing of metallic components by combining laser-based Additive and Subtractive processes with high Efficiency” (Grant Agreement 723440), an initiative of the Public-Private Partnership “Photonics and Factories of the Future”. The authors also acknowledge support from the European Institute of Innovation & Technology (EIT) through the project "DEDALUS: Directed Energy Deposition machines with integrated process ALgorithms Under dedicated monitoring and control System” (ID 20094), an initiative of the EIT Manufacturing. Finally, the authors acknowledge the vice-counseling of technology, innovation and competitiveness of the Basque Country for support of the project “PROCODA: Procesos de alto valor basados en el conocimiento y los datos” (KK2019/00004) within Elkartek 2019 and the project “ADDISEND: cooperación cientifica en fa , The authors acknowledge support from the European Commission through the project "PARADDISE: a Productive, Affordable and Reliable solution for large scale manufacturing of metallic components by combining laser-based Additive and Subtractive processes with high Efficiency” (Grant Agreement 723440), an initiative of the Public-Private Partnership “Photonics and Factories of the Future”. The authors also acknowledge support from the European Institute of Innovation & Technology (EIT) through the project "DEDALUS: Directed Energy Deposition machines with integrated process ALgorithms Under dedicated monitoring and control System” (ID 20094), an initiative of the EIT Manufacturing. Finally, the authors acknowledge the vice-counseling of technology, innovation and competitiveness of the Basque Country for support of the project “PROCODA: Procesos de alto valor basados en el conocimiento y los datos” (KK2019/00004) within Elkartek 2019 and the project “ADDISEND: cooperación cientifica en fa
Citation
Ramiro , P , Ortiz , M , Alberdi , A & Lamikiz , A 2020 , ' Geometrical model and strategy in single and multilayer structures deposited by powder-fed Directed Energy Deposition ' , Procedia CIRP , vol. 94 , pp. 352-356 . https://doi.org/10.1016/j.procir.2020.09.144