Circuit Modeling of rGO-doped Scaffolds for Spinal Cord Regeneration Based on Transient and xAC Analyses

dc.contributor.authorAl-Maghrabi, Latifah
dc.contributor.authorMartins, Patricia
dc.contributor.authorSilva, Daniela
dc.contributor.authorGil, Guilherme
dc.contributor.authorBarroca, Nathalie
dc.contributor.authorMurua, Olatz
dc.contributor.authorOlalde, Beatriz
dc.contributor.authorAlves, Luis
dc.contributor.authorPedreiras, Paulo
dc.contributor.authorFonseca, Pedro
dc.contributor.authorLeduc, Philip
dc.contributor.authorMarques, Paula
dc.contributor.institutionSG
dc.contributor.institutionBiomateriales
dc.date.accessioned2024-07-24T11:48:41Z
dc.date.available2024-07-24T11:48:41Z
dc.date.issued2022
dc.descriptionPublisher Copyright: © 2022 IEEE.
dc.description.abstractCircuit modeling of scaffolds based on porcine adipose decellularized extracellular matrix (adECM) doped with reduced graphene oxide (rGO) for spinal cord regeneration is presented. The characteristics of the scaffolds capped with silver electrodes were studied in an aqueous medium through transient and AC analyses. In addition, cyclic voltammetry (CV) plots were obtained. The transient measurements were done using a custom current driver while the CV and AC measurements were obtained with an external impedance analyzer. The results revealed that incorporating rGO reduced the series resistance and the impedance at low frequencies of the scaffold.en
dc.description.sponsorshipThis work is supported by the NeuroStimSpinal Project, Grant Agreement No. 829060 and the Fundac¸ão para a Ciência e Tecnologia (FCT), Ph.D. grant No. SFRH/BD/150824/2021.
dc.description.statusPeer reviewed
dc.format.extent5
dc.identifier.citationAl-Maghrabi , L , Martins , P , Silva , D , Gil , G , Barroca , N , Murua , O , Olalde , B , Alves , L , Pedreiras , P , Fonseca , P , Leduc , P & Marques , P 2022 , Circuit Modeling of rGO-doped Scaffolds for Spinal Cord Regeneration Based on Transient and xAC Analyses . in IEEE International Symposium on Circuits and Systems, ISCAS 2022 . Proceedings - IEEE International Symposium on Circuits and Systems , vol. 2022-May , Institute of Electrical and Electronics Engineers Inc. , pp. 1087-1091 , 2022 IEEE International Symposium on Circuits and Systems, ISCAS 2022 , Austin , United States , 27/05/22 . https://doi.org/10.1109/ISCAS48785.2022.9937411
dc.identifier.citationconference
dc.identifier.doi10.1109/ISCAS48785.2022.9937411
dc.identifier.isbn9781665484855
dc.identifier.issn0271-4310
dc.identifier.urihttps://hdl.handle.net/11556/1793
dc.identifier.urlhttp://www.scopus.com/inward/record.url?scp=85142524781&partnerID=8YFLogxK
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers Inc.
dc.relation.ispartofIEEE International Symposium on Circuits and Systems, ISCAS 2022
dc.relation.ispartofseriesProceedings - IEEE International Symposium on Circuits and Systems
dc.relation.projectIDFundação para a Ciência e a Tecnologia, FCT, SFRH/BD/150824/2021
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subject.keywordsSCI
dc.subject.keywordselectrical stimulation
dc.subject.keywordsinjury
dc.subject.keywordsneural recovery
dc.subject.keywordsregeneration
dc.subject.keywordsscaffold
dc.subject.keywordsElectrical and Electronic Engineering
dc.titleCircuit Modeling of rGO-doped Scaffolds for Spinal Cord Regeneration Based on Transient and xAC Analysesen
dc.typeconference output
Files