Brain oscillatory signatures of motor tasks

dc.contributor.authorRamos-Murguialday, Ander
dc.contributor.authorBirbaumer, Niels
dc.contributor.institutionMedical Technologies
dc.date.accessioned2024-07-24T12:13:16Z
dc.date.available2024-07-24T12:13:16Z
dc.date.issued2015-06-01
dc.descriptionPublisher Copyright: © 2015 the American Physiological Society.
dc.description.abstractNoninvasive brain-computer-interfaces (BCI) coupled with prosthetic devices were recently introduced in the rehabilitation of chronic stroke and other disorders of the motor system. These BCI systems and motor rehabilitation in general involve several motor tasks for training. This study investigates the neurophysiological bases of an EEG-oscillation- driven BCI combined with a neuroprosthetic device to define the specific oscillatory signature of the BCI task. Controlling movements of a hand robotic orthosis with motor imagery of the same movement generates sensorimotor rhythm oscillation changes and involves three elements of tasks also used in stroke motor rehabilitation: passive and active movement, motor imagery, and motor intention. We recorded EEG while nine healthy participants performed five different motor tasks consisting of closing and opening of the hand as follows: 1) motor imagery without any external feedback and without overt hand movement, 2) motor imagery that moves the orthosis proportional to the produced brain oscillation change with online proprioceptive and visual feedback of the hand moving through a neuroprosthetic device (BCI condition), 3) passive and 4) active movement of the hand with feedback (seeing and feeling the hand moving), and 5) rest. During the BCI condition, participants received contingent online feedback of the decrease of power of the sensorimotor rhythm, which induced orthosis movement and therefore proprioceptive and visual information from the moving hand. We analyzed brain activity during the five conditions using time-frequency domain bootstrap-based statistical comparisons and Morlet transforms. Activity during rest was used as a reference. Significant contralateral and ipsilateral event-related desynchronization of sensorimotor rhythm was present during all motor tasks, largest in contralateral-postcentral, medio-central, and ipsilateral- precentral areas identifying the ipsilateral precentral cortex as an integral part of motor regulation. Changes in task-specific frequency power compared with rest were similar between motor tasks, and only significant differences in the time course and some narrow specific frequency bands were observed between motor tasks. We identified EEG features representing active and passive proprioception (with and without muscle contraction) and active intention and passive involvement (with and without voluntary effort) differentiating brain oscillations during motor tasks that could substantially support the design of novel motor BCI-based rehabilitation therapies. The BCI task induced significantly different brain activity compared with the other motor tasks, indicating neural processes unique to the use of body actuators control in a BCI context.en
dc.description.statusPeer reviewed
dc.format.extent20
dc.identifier.citationRamos-Murguialday , A & Birbaumer , N 2015 , ' Brain oscillatory signatures of motor tasks ' , Journal of Neurophysiology , vol. 113 , no. 10 , pp. 3663-3682 . https://doi.org/10.1152/jn.00467.2013
dc.identifier.doi10.1152/jn.00467.2013
dc.identifier.issn0022-3077
dc.identifier.urihttps://hdl.handle.net/11556/4355
dc.identifier.urlhttp://www.scopus.com/inward/record.url?scp=84930861563&partnerID=8YFLogxK
dc.language.isoeng
dc.relation.ispartofJournal of Neurophysiology
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subject.keywordsEEG
dc.subject.keywordsMotor action
dc.subject.keywordsNeuroprostheses
dc.subject.keywordsProprioceptive feedback
dc.subject.keywordsGeneral Neuroscience
dc.subject.keywordsPhysiology
dc.subject.keywordsSDG 3 - Good Health and Well-being
dc.titleBrain oscillatory signatures of motor tasksen
dc.typejournal article
Files