Solvent-free synthesis of glycerol carbonate and glycidol from 3-chloro-1,2-propanediol and potassium (hydrogen) carbonate

dc.contributor.authorGómez-Jiménez-Aberasturi, Olga
dc.contributor.authorOchoa-Gómez, José R.
dc.contributor.authorPesquera-Rodríguez, Amaia
dc.contributor.authorRamírez-López, Camilo
dc.contributor.authorAlonso-Vicario, Ainhoa
dc.contributor.authorTorrecilla-Soria, Jesús
dc.contributor.institutionBIOECONOMÍA Y CO2
dc.contributor.institutionTecnalia Research & Innovation
dc.contributor.institutionCentros PRE-FUSION TECNALIA - (FORMER)
dc.contributor.institutionSG
dc.date.accessioned2024-07-24T12:15:37Z
dc.date.available2024-07-24T12:15:37Z
dc.date.issued2010-12
dc.description.abstractBACKGROUND: An indirect solvent-free synthetic approach for obtaining glycerol carbonate and glycidol from glycerol and CO2 through their more reactive and easily synthesizable derivatives 3-chloro-1,2-propanediol (HAL) and potassium (hydrogen) carbonate has been studied. RESULTS: The reaction is fast with source of carbonation and temperature having a strong influence on the results. A yield of 80% glycerol carbonate together with a simultaneous substantial production of glycidol (0.56 mol mol-1 glycerol carbonate) are obtained using K2CO3 as the carbonation source at 80 °C, a reaction time of 30 min and a 3:1 HAL/K2CO3 molar ratio. A lower yield of glycerol carbonate (60%) is obtained from KHCO3 after 50 min with the other experimental conditions remaining unchanged. In this case, glycidol formation is zero or insignificant. Glycerol is also obtained in high yields, although in much lower amounts from KHCO3 (~0.59 mol mol-1 glycerol carbonate independent of operating conditions) than from K2CO3 (0.84-1.1 mol mol-1 glycerol carbonate, depending on experimental conditions). CONCLUSIONS: The proposed synthetic strategy overcomes the currently difficult direct reaction between glycerol and CO2, leading to the simultaneous synthesis of two valuable chemicals: glycerol carbonate and glycidol. However, glycerol is also obtained in substantial amounts thus decreasing the overall yield of the process. Thus, methods for preventing its formation must be developed for industrial feasibility.en
dc.description.statusPeer reviewed
dc.format.extent8
dc.identifier.citationGómez-Jiménez-Aberasturi , O , Ochoa-Gómez , J R , Pesquera-Rodríguez , A , Ramírez-López , C , Alonso-Vicario , A & Torrecilla-Soria , J 2010 , ' Solvent-free synthesis of glycerol carbonate and glycidol from 3-chloro-1,2-propanediol and potassium (hydrogen) carbonate ' , Journal of Chemical Technology and Biotechnology , vol. 85 , no. 12 , pp. 1663-1670 . https://doi.org/10.1002/jctb.2478
dc.identifier.doi10.1002/jctb.2478
dc.identifier.issn0268-2575
dc.identifier.urihttps://hdl.handle.net/11556/4594
dc.identifier.urlhttp://www.scopus.com/inward/record.url?scp=78349250152&partnerID=8YFLogxK
dc.language.isoeng
dc.relation.ispartofJournal of Chemical Technology and Biotechnology
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subject.keywords3-chloro-1,2-propanediol
dc.subject.keywordsGlycerol
dc.subject.keywordsGlycerol carbonate
dc.subject.keywordsGlycidol
dc.subject.keywordsPotassium (hydrogen)carbonate
dc.subject.keywordsBiotechnology
dc.subject.keywordsGeneral Chemical Engineering
dc.subject.keywordsRenewable Energy, Sustainability and the Environment
dc.subject.keywordsFuel Technology
dc.subject.keywordsWaste Management and Disposal
dc.subject.keywordsPollution
dc.subject.keywordsOrganic Chemistry
dc.subject.keywordsInorganic Chemistry
dc.titleSolvent-free synthesis of glycerol carbonate and glycidol from 3-chloro-1,2-propanediol and potassium (hydrogen) carbonateen
dc.typejournal article
Files