Simulation-based assessment of data center waste heat utilization using aquifer thermal energy storage of a university campus

dc.contributor.authorDvorak, Vojtech
dc.contributor.authorZavrel, Vojtech
dc.contributor.authorTorrens Galdiz, J. I.
dc.contributor.authorHensen, Jan L. M.
dc.contributor.institutionTecnalia Research & Innovation
dc.date.issued2020-08-01
dc.descriptionPublisher Copyright: © 2020, The Author(s).
dc.description.abstractThe global energy consumption of data centers (DCs) has experienced exponential growth over the last decade, that is expected to continue in the near future. Reasonable utilization of DC waste heat, which is dissipated during the computational process, can potentially be an effective solution to mitigate the environmental impact. However, the practical implementation of waste heat utilization in the DC environment is a very challenging task. The possible benefits of waste heat utilization are uncertain and difficult to quantify with the methods that are common in practice. This paper introduces a feasibility study in which dynamic simulation tools were used to predict the energy performance of a university campus resulting from the integration of a proposed DC system with an existing aquifer thermal energy storage (ATES). The presented study utilizes building energy simulation (BES) to evaluate uncertainty of the waste heat potential associated to various thermal management strategies of the proposed DC. Further in the feasibility study, the carbon footprint of the integrated approach is assessed for both the current and future situation based on measured data from the existing university campus and its district ATES system.en
dc.description.statusPeer reviewed
dc.format.extent14
dc.format.extent2206794
dc.identifier.citationDvorak , V , Zavrel , V , Torrens Galdiz , J I & Hensen , J L M 2020 , ' Simulation-based assessment of data center waste heat utilization using aquifer thermal energy storage of a university campus ' , Building Simulation , vol. unknown , no. 4 , pp. 823-836 . https://doi.org/10.1007/s12273-020-0629-y
dc.identifier.doi10.1007/s12273-020-0629-y
dc.identifier.issn1996-3599
dc.identifier.otherresearchoutputwizard: 11556/915
dc.identifier.urlhttp://www.scopus.com/inward/record.url?scp=85083780835&partnerID=8YFLogxK
dc.language.isoeng
dc.relation.ispartofBuilding Simulation
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subject.keywordsData center
dc.subject.keywordsWaste heat utilization
dc.subject.keywordsAquifer thermal energy storage
dc.subject.keywordsNumerical modelling
dc.subject.keywordsEnergy planning
dc.subject.keywordsData center
dc.subject.keywordsWaste heat utilization
dc.subject.keywordsAquifer thermal energy storage
dc.subject.keywordsNumerical modelling
dc.subject.keywordsEnergy planning
dc.subject.keywordsBuilding and Construction
dc.subject.keywordsEnergy (miscellaneous)
dc.subject.keywordsSDG 12 - Responsible Consumption and Production
dc.subject.keywordsSDG 13 - Climate Action
dc.titleSimulation-based assessment of data center waste heat utilization using aquifer thermal energy storage of a university campusen
dc.typejournal article
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Dvorak2020_Article_Simulation-basedAssessmentOfDa.pdf
Size:
2.1 MB
Format:
Adobe Portable Document Format