On the tuning of fractional order resonant controllers for a voltage source converter in a weak AC grid context

dc.contributor.authorHaro-Larrode, Marta
dc.contributor.authorBergna-Diaz, Gilbert
dc.contributor.authorEguia, Pablo
dc.contributor.authorSantos-Mugica, Maider
dc.contributor.institutionTecnalia Research & Innovation
dc.contributor.institutionPOWER SYSTEMS
dc.date.issued2021-03
dc.descriptionPublisher Copyright: © 2013 IEEE.
dc.description.abstractThis paper proposes a method for tuning the fractional exponent of different types of fractional order resonant controllers for a voltage source converter in a weak AC grid context. The main objective is to ensure the stability of the controlled system in a weak AC grid environment and to achieve an adequate dynamic response under disturbances. Therefore, six commonly used integer order proportional resonant (PR) control structures are selected from the literature and compared with each other according to their frequency behaviour. Afterwards, a rational approximation for the fractional order term is selected based on continuous fraction expansion technique. The inclusion of a fractional exponent in each integer order PR structure generates the fractional order proportional resonant (FPR) control transfer functions. Once the FPR controllers have been obtained, their closed-loop responses are tested via eigenvalue trajectory analysis. For each FPR control structure, a range of the fractional exponent that ensures stability is obtained. The conclusions of eigenvalue trajectory analysis are tested by implementing the FPR control structures in an specific application consisting in a modular multi-level converter (MMC) connected to a weak AC grid with adjustable short-circuit ratio. By means of time-domain simulations, not only the previous eigenvalue analyses are validated, but also new tuning criteria are given for the fractional exponent in combination with other control parameters, such as the damping frequency and the inductance of the complementary feedback branch. Moreover, a sensitivity analysis of the tuning criteria is carried out for other sizes of the AC filter inductance.en
dc.description.statusPeer reviewed
dc.format.extent18
dc.format.extent4676670
dc.identifier.citationHaro-Larrode , M , Bergna-Diaz , G , Eguia , P & Santos-Mugica , M 2021 , ' On the tuning of fractional order resonant controllers for a voltage source converter in a weak AC grid context ' , IEEE Access , vol. 9 , 9389547 , pp. 52741-52758 . https://doi.org/10.1109/ACCESS.2021.3069444
dc.identifier.doi10.1109/ACCESS.2021.3069444
dc.identifier.issn2169-3536
dc.identifier.otherresearchoutputwizard: 11556/1112
dc.identifier.urlhttp://www.scopus.com/inward/record.url?scp=85103756338&partnerID=8YFLogxK
dc.language.isoeng
dc.relation.ispartofIEEE Access
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subject.keywordsStability analysis
dc.subject.keywordsFractional order resonant control
dc.subject.keywordsFrequency analysis
dc.subject.keywordsWeak AC grid
dc.subject.keywordsStability analysis
dc.subject.keywordsFractional order resonant control
dc.subject.keywordsFrequency analysis
dc.subject.keywordsWeak AC grid
dc.subject.keywordsGeneral Computer Science
dc.subject.keywordsGeneral Materials Science
dc.subject.keywordsGeneral Engineering
dc.subject.keywordsFunding Info
dc.subject.keywordsThis work was supported by the Basque Government through the Project of Research Group GISEL under Grant IT1083-16. Besides, TECNALIA is a ‘‘CERVERA Technology Centre of Excellence’’ recognised by the Ministry of Science and Innovation.
dc.subject.keywordsThis work was supported by the Basque Government through the Project of Research Group GISEL under Grant IT1083-16. Besides, TECNALIA is a ‘‘CERVERA Technology Centre of Excellence’’ recognised by the Ministry of Science and Innovation.
dc.titleOn the tuning of fractional order resonant controllers for a voltage source converter in a weak AC grid contexten
dc.typejournal article
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
09389547.pdf
Size:
4.46 MB
Format:
Adobe Portable Document Format