A novel approach for the detection of anomalous energy consumption patterns in industrial cyber‐physical systems
Date
2022-02-25Keywords
Anomaly detection
Energy efficiency
Industrial cyber-physical systems
Industry 4.0
Smart manufacturing
Abstract
Most scenarios emerging from the Industry 4.0 paradigm rely on the concept of cyber-physical production systems (CPPS), which allow them to synergistically connect physical to digital setups so as to integrate them over all stages of product development. Unfortunately, endowing CPPS with AI-based functionalities poses its own challenges: although advances in the performance of AI models keep blossoming in the community, their penetration in real-world industrial solutions has not so far developed at the same pace. Currently, 90% of AI-based models never reach production due to a manifold of assorted reasons not only related to complexity and performance: decisions issued by AI-based systems must be explained, understood and trusted by their end users. This study elaborates on a novel tool designed to characterize, in a non-supervised, human-understandable fashion, the nominal performance of a factory in terms of production and energy consumption. The traceability and analysis of energy ...
Type
article