From Data to Actions in Intelligent Transportation Systems: A Prescription of Functional Requirements for Model Actionability
Date
2021-02-05Keywords
Intelligent transportation systems
Functional requirements
Machine learning
Model actionability
Model evaluation
Abstract
Advances in Data Science permeate every field of Transportation Science and Engineering,
resulting in developments in the transportation sector that are data-driven. Nowadays, Intelligent
Transportation Systems (ITS) could be arguably approached as a “story” intensively producing and
consuming large amounts of data. A diversity of sensing devices densely spread over the infrastructure,
vehicles or the travelers’ personal devices act as sources of data flows that are eventually
fed into software running on automatic devices, actuators or control systems producing, in turn,
complex information flows among users, traffic managers, data analysts, traffic modeling scientists,
etc. These information flows provide enormous opportunities to improve model development and
decision-making. This work aims to describe how data, coming from diverse ITS sources, can be used
to learn and adapt data-driven models for efficiently operating ITS assets, systems and processes;
in other words, for ...
Type
article