Browsing by Keyword "Molecular Medicine"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Differential expression of oxidative stress and inflammation related genes in peripheral blood mononuclear cells in response to a low-calorie diet: A nutrigenomics study(2008-12-01) Crujeiras, Ana B.; Parra, Dolores; Milagro, Fermín I.; Goyenechea, Estibaliz; Larrarte, Eider; Margareto, Javier; Martínez, J. Alfredo; Generales; GenéticaNutrigenomics is a new application of omics technologies in nutritional science. Nutrigenomics aims to identify molecular markers of diet-related diseases and mechanisms of interindividual variability in response to food. The aim of this study was to evaluate peripheral blood mononuclear cells (PBMC) as a model system and readily available source of RNA to discern gene expression signatures in relation to personalized therapy of obesity. PBMC were collected from obese men before and after an 8-week low-calorie diet (LCD) to lose weight. Changes in gene expression before and after the LCD were initially screened using a DNA-microarray platform and validated by qRT-PCR. Global gene expression analysis identified 385 differentially expressed transcripts after the LCD. Further analyses showed a decrease in some specific oxidative stress and inflammation genes. Interestingly, expression of these genes was directly related to body weight, while a lower IL8 gene expression was associated with higher fat mass decrease. Collectively, these observations suggest that PBMCs are a suitable RNA source and model system to perform nutrigenomics studies related to obesity and development of personalized dietary treatments. IL8 gene expression warrant further research as a putative novel biomarker of changes in body fat percentage in response to an LCD.Item Effectiveness of subunit influenza vaccination in the 2014-2015 season and residual effect of split vaccination in previous seasons(2016-03-08) Network for Influenza Surveillance in Hospitals of Navarra; Primary Health Care Sentinel Network; TRAZABILIDAD CIRCULARBackground: In Navarra, Spain, subunit vaccine was first used in the 2014-2015 season, whereas trivalent split-virion influenza vaccines had been used in previous seasons. We estimate the effectiveness of the subunit vaccine in the current season and split vaccine in the two previous seasons against laboratory-confirmed influenza in the 2014-2015 season. Methods: Patients with influenza-like illness hospitalized or attended by sentinel general practitioners were swabbed for influenza testing. The previous and current vaccine status of laboratory-confirmed cases was compared to test-negative controls. Results: Among 1213 patients tested, 619 (51%) were confirmed for influenza virus: 52% influenza A(H3N2), 46% influenza B, and 2% A(H1N1)pdm09. The overall effectiveness for subunit vaccination in the current season was 19% (95% confidence interval [CI]: -13 to 42), 2% (95%CI: -47 to 35) against influenza A(H3N2) and 32% (95%CI: -4 to 56) against influenza B. The effectiveness against any influenza was 67% (95%CI: 17-87) for 2012-2013 and 2013-2014 vaccination only, 42% (95%CI: -31 to 74) for 2014-2015 vaccination only, and 38% (95%CI: 8-58) for vaccination in the 2012-2013, 2013-2014 and 2014-2015 seasons. The same estimates against influenza A(H3N2) were 47% (95%CI: -60 to 82), -54% (95%CI: -274 to 37) and 28% (95%CI: -17 to 56), and against influenza B were 82% (95%CI: 19-96), 93% (95%CI: 45-99) and 43% (95%CI: 5-66), respectively. Conclusion: These results suggest a considerable residual protection of split vaccination in previous seasons, low overall effectiveness of current season subunit vaccination, and possible interference between current subunit and previous split vaccines.Item Fluidized Bed Membrane Reactors for Ultra Pure H2 Production - A Step forward towards Commercialization(2016-03-19) Helmi, Arash; Fernandez, Ekain; Melendez, Jon; Pacheco Tanaka, David A.; Gallucci, Fausto; van Sint Annaland, Martin; TECNOLOGÍAS DE HIDRÓGENO; Tecnalia Research & Innovation; TECNOLOGÍA DE MEMBRANAS E INTENSIFICACIÓN DE PROCESOSIn this research the performance of a fluidized bed membrane reactor for high temperature water gas shift and its long term stability was investigated to provide a proof-of-concept of the new system at lab scale. A demonstration unit with a capacity of 1 Nm3/h of ultra-pure H2 was designed, built and operated over 900 h of continuous work. Firstly, the performance of the membranes were investigated at different inlet gas compositions and at different temperatures and H2 partial pressure differences. The membranes showed very high H2 fluxes (3.89E 6 mol m 2 Pa 1 s 1 at 400 C and 1 atm pressure difference) with a H2/N2 ideal perm-selectivity (up to 21,000 when integrating five membranes in the module) beyond the DOE 2015 targets. Monitoring the performance of the membranes and the reactor confirmed a very stable performance of the unit for continuous high temperature water gas shift under bubbling fluidization conditions. Several experiments were carried out at different temperatures, pressures and various inlet compositions to determine the optimum operating window for the reactor. The obtained results showed high hydrogen recovery factors, and very low CO concentrations at the permeate side (in average <10 ppm), so that the produced hydrogen can be directly fed to a low temperature PEM fuel cell.Item Morphology and N2 Permeance of Sputtered Pd-Ag Ultra-Thin Film Membranes(2016-02-10) Fernandez, Ekain; Sanchez-Garcia, Jose Angel; Viviente, J.L.; van Sint Annaland, Martin; Gallucci, Fausto; Pacheco Tanaka, David A.; Tecnalia Research & Innovation; TECNOLOGÍAS DE HIDRÓGENO; TECNOLOGÍA DE MEMBRANAS E INTENSIFICACIÓN DE PROCESOSThe influence of the temperature during the growth of Pd-Ag films by PVD magnetron sputtering onto polished silicon wafers was studied in order to avoid the effect of the support roughness on the layer growth. The surfaces of the Pd-Ag membrane films were analyzed by atomic force microscopy (AFM), and the results indicate an increase of the grain size from 120 to 250–270 nm and film surface roughness from 4–5 to 10–12 nm when increasing the temperature from around 360–510 K. After selecting the conditions for obtaining the smallest grain size onto silicon wafer, thin Pd-Ag (0.5–2-µm thick) films were deposited onto different types of porous supports to study the influence of the porous support, layer thickness and target power on the selective layer microstructure and membrane properties. The Pd-Ag layers deposited onto ZrO2 3-nm top layer supports (smallest pore size among all tested) present high N2 permeance in the order of 10−6 mol•m−2•s−1•Pa−1 at room temperature.Item Recent Advances in Pd-Based Membranes for Membrane Reactors(2017-01-01) Arratibel Plazaola, Alba; Pacheco Tanaka, David A.; Van Sint Annaland, Martin; Gallucci, Fausto; Tecnalia Research & Innovation; TECNOLOGÍA DE MEMBRANAS E INTENSIFICACIÓN DE PROCESOSPalladium-based membranes for hydrogen separation have been studied by several research groups during the last 40 years. Much effort has been dedicated to improving the hydrogen flux of these membranes employing different alloys, supports, deposition/production techniques, etc. High flux and cheap membranes, yet stable at different operating conditions are required for their exploitation at industrial scale. The integration of membranes in multifunctional reactors (membrane reactors) poses additional demands on the membranes as interactions at different levels between the catalyst and the membrane surface can occur. Particularly, when employing the membranes in fluidized bed reactors, the selective layer should be resistant to or protected against erosion. In this review we will also describe a novel kind of membranes, the pore-filled type membranes prepared by Pacheco Tanaka and coworkers that represent a possible solution to integrate thin selective membranes into membrane reactors while protecting the selective layer. This work is focused on recent advances on metallic supports, materials used as an intermetallic diffusion layer when metallic supports are used and the most recent advances on Pd-based composite membranes. Particular attention is paid to improvements on sulfur resistance of Pd based membranes, resistance to hydrogen embrittlement and stability at high temperature.Item Systematic Collaborative Reanalysis of Genomic Data Improves Diagnostic Yield in Neurologic Rare Diseases(2022-05) Undiagnosed Rare Disease Program of Catalonia (URD-Cat) Consortium; GenéticaMany patients experiencing a rare disease remain undiagnosed even after genomic testing. Reanalysis of existing genomic data has shown to increase diagnostic yield, although there are few systematic and comprehensive reanalysis efforts that enable collaborative interpretation and future reinterpretation. The Undiagnosed Rare Disease Program of Catalonia project collated previously inconclusive good quality genomic data (panels, exomes, and genomes) and standardized phenotypic profiles from 323 families (543 individuals) with a neurologic rare disease. The data were reanalyzed systematically to identify relatedness, runs of homozygosity, consanguinity, single-nucleotide variants, insertions and deletions, and copy number variants. Data were shared and collaboratively interpreted within the consortium through a customized Genome-Phenome Analysis Platform, which also enables future data reinterpretation. Reanalysis of existing genomic data provided a diagnosis for 20.7% of the patients, including 1.8% diagnosed after the generation of additional genomic data to identify a second pathogenic heterozygous variant. Diagnostic rate was significantly higher for family-based exome/genome reanalysis compared with singleton panels. Most new diagnoses were attributable to recent gene-disease associations (50.8%), additional or improved bioinformatic analysis (19.7%), and standardized phenotyping data integrated within the Undiagnosed Rare Disease Program of Catalonia Genome-Phenome Analysis Platform functionalities (18%).