Browsing by Keyword "Energy conservation"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Multi-scale urban data models for early-stage suitability assessment of energy conservation measures in historic urban areas(2018-04-01) Egusquiza, Aitziber; Prieto, Iñaki; Izkara, Jose Luis; Béjar, Rubén; LABORATORIO DE TRANSFORMACIÓN URBANA; Tecnalia Research & InnovationThe demand for improving the energy performance of buildings located in the historic districts of cities is as high as the current demand in other city districts. The need to reduce energy consumption and improve the comfort of inhabitants is compounded by the need to preserve an environment of heritage value. The selection of rehabilitation strategies at urban scale offers significant benefits, but makes the process long and costly. Therefore, methods or tools are necessary to establish a rapid assessment that facilitates strategic decision making and a deeper analysis of a reduced number of alternatives.This paper describes a method that supports decision making regarding the suitability of Energy Conservation Measures (ECMs) in historic districts at early stages. The method considers the improvement of the energy performance of buildings as a positive impact, balanced with the negative impacts that the implementation of ECMs could produce. A CityGML-based urban model allows the automation of a multi-scale assessment for different ECMs and provides possible global energy demand reductions. This method, combined with an economic evaluation, can be used by decision makers for large-scale energy retrofitting. The applicability of the method is demonstrated through implementation in the historic city of Santiago de Compostela.Item RELaTED, decentralized & renewable Ultra Low Temperature District Heating, concept conversion from traditional district heating(2019-10-23) Lumbreras Mugaguren, Mikel; Garay, Roberto; Sánchez Zabala, Víctor; Garay Martínez, Roberto; Tecnalia Research & Innovation; EDIFICACIÓN DE ENERGÍA POSITIVADistrict Heating (DH) are a very efficient system for heating in urban areas and they are considered as key elements for the de-carbonization of the European Cities. High performance levels and low operational energy costs are part of the identity of these heating networks. The reduction of supply-line temperatures allows the possibility to introduce new low-grade and renewable source energy production, reducing dependence on fossil fuel-based energy plants. Moreover, heat-losses in distribution pipelines are also reduced, since the gradient temperature between supply line and ambient temperature is reduced. Operation of decentralized & Ultra Low Temperature (ULT) systems may adapt for the introduction of weather-dependent, distributed heat sources such as solar systems. Furthermore, although very dependent on local availability, waste heat streams from commercial and industrial installations are also considered because of the stability of heat supply all year round, resulting in minimally carbon intensive processes. Regarding building features, the reduced heat load derived from the transition from current buildings to Nearly Zero Energy Buildings (NZEB), RELaTED allows for the novel concept called prosumer, where buildings can deliver energy to the grid from decentralized energy sources installed in the building. In RELaTED, different subsystems are being developed by different industrial partners, to prove their efficiency in 4 real demonstration sites: Tartu (Estonia), Belgrade (Serbia), Vinge (Denmark) and Iurreta (Spain). A 3-FS (3-Function Scheme) DH substation that permits buildings to become prosumers. Two types of solar collectors, one is an all polymeric glazed collector and the second one is an unglazed collector, both as components of Building Integrated Large Solar Thermal Systems (BILSTS) solar loop. Finally, a reversible and high efficiency heat pump for domestic hot water is being developed. In this paper, an approach to ULT concept is studied, including transitory phases of the conversion.