Browsing by Author "Bilbao, M. N."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Cost-efficient deployment of multi-hop wireless networks over disaster areas using multi-objective meta-heuristics(2018-01-03) Bilbao, M. N.; Del Ser, Javier; Perfecto, C.; Salcedo-Sanz, S.; Portilla-Figueras, J. A.; IANowadays there is a global concern with the growing frequency and magnitude of natural disasters, many of them associated with climate change at a global scale. When tackled during a stringent economic era, the allocation of resources to efficiently deal with such disaster situations (e.g., brigades, vehicles and other support equipment for fire events) undergoes severe budgetary limitations which, in several proven cases, have lead to personal casualties due to a reduced support equipment. As such, the lack of enough communication resources to cover the disaster area at hand may cause a risky radio isolation of the deployed teams and ultimately fatal implications, as occurred in different recent episodes in Spain and USA during the last decade. This issue becomes even more dramatic when understood jointly with the strong budget cuts lately imposed by national authorities. In this context, this article postulates cost-efficient multi-hop communications as a technological solution to provide extended radio coverage to the deployed teams over disaster areas. Specifically, a Harmony Search (HS) based scheme is proposed to determine the optimal number, position and model of a set of wireless relays that must be deployed over a large-scale disaster area. The approach presented in this paper operates under a Pareto-optimal strategy, so a number of different deployments is then produced by balancing between redundant coverage and economical cost of the deployment. This information can assist authorities in their resource provisioning and/or operation duties. The performance of different heuristic operators to enhance the proposed HS algorithm are assessed and discussed by means of extensive simulations over synthetically generated scenarios, as well as over a more realistic, orography-aware setup constructed with LIDAR (Laser Imaging Detection and Ranging) data captured in the city center of Bilbao (Spain).Item A novel machine learning approach to the detection of identity theft in social networks based on emulated attack instances and support vector machines(2016-03-25) Villar-Rodríguez, E.; Del Ser, Javier; Torre-Bastida, A. I.; Bilbao, M. N.; Salcedo-Sanz, Sancho; Quantum; IA; HPAThe proliferation of social networks and their usage by a wide spectrum of user profiles has been specially notable in the last decade. A social network is frequently conceived as a strongly interlinked community of users, each featuring a compact neighborhood tightly and actively connected through different communication flows. This realm unleashes a rich substrate for a myriad of malicious activities aimed at unauthorizedly profiting from the user itself or from his/her social circle. This manuscript elaborates on a practical approach for the detection of identity theft in social networks, by which the credentials of a certain user are stolen and used without permission by the attacker for its own benefit. The proposed scheme detects identity thefts by exclusively analyzing connection time traces of the account being tested in a nonintrusive manner. The manuscript formulates the detection of this attack as a binary classification problem, which is tackled by means of a support vector classifier applied over features inferred from the original connection time traces of the user. Simulation results are discussed in depth toward elucidating the potentiality of the proposed system as the first step of a more involved impersonation detection framework, also relying on connectivity patterns and elements from language processing.Item A survey on applications of the harmony search algorithm(2013-09) Manjarres, D.; Landa-Torres, I.; Gil-Lopez, S.; Del Ser, J.; Bilbao, M. N.; Salcedo-Sanz, S.; Geem, Z. W.; IA; Tecnalia Research & InnovationThis paper thoroughly reviews and analyzes the main characteristics and application portfolio of the so-called Harmony Search algorithm, a meta-heuristic approach that has been shown to achieve excellent results in a wide range of optimization problems. As evidenced by a number of studies, this algorithm features several innovative aspects in its operational procedure that foster its utilization in diverse fields such as construction, engineering, robotics, telecommunications, health and energy. This manuscript will go through the most recent literature on the application of Harmony Search to the aforementioned disciplines towards a three-fold goal: (1) to underline the good behavior of this modern meta-heuristic based on the upsurge of related contributions reported to date; (2) to set a bibliographic basis for future research trends focused on its applicability to other areas; (3) to provide an insightful analysis of future research lines gravitating on this meta-heuristic solver.