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Abstract

Vehicle flow forecasting is of crucial importance for the management of road
traffic in complex urban networks, as well as a useful input for route planning al-
gorithms. In general traffic predictive models rely on data gathered by different
types of sensors placed on roads, which occasionally produce faulty readings due
to several causes, such as malfunctioning hardware or transmission errors. Filling
in those gaps is relevant for constructing accurate forecasting models, a task which
is engaged by diverse strategies, from a simple null value imputation to complex
spatio-temporal context imputation models. This work elaborates on two machine
learning approaches to update missing data with no gap length restrictions: a spa-
tial context sensing model based on the information provided by surrounding sen-
sors, and an automated clustering analysis tool that seeks optimal pattern clusters
in order to impute values. Their performance is assessed and compared to other
common techniques and different missing data generation models over real data
captured from the city of Madrid (Spain). The newly presented methods are found
to be fairly superior when portions of missing data are large or very abundant, as
occurs in most practical cases.
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1. Introduction

Road traffic forecasting methods have been under active research, develop-
ment and implementation for more than 40 years, a history that has hitherto in-
volved time-series analysis and prediction models with a wide diversity of algo-
rithmic variants and processing enhancements. More recently, machine learning
techniques have acquired momentum by virtue of the large amount of successful
methodologies, algorithms and optimization procedures (Abdel-Aty et al., 1997;
Vlahogianni et al., 2007; Van Hinsbergen et al., 2007; Vlahogianni et al., 2014),
further propelled by the advent of Big Data technologies (Schimbinschi et al.,
2015; Lv et al., 2015).

In this context, the most relevant traffic variables (i.e. flow, speed, travel time,
occupancy) have been predicted using data captured by magnetic loops, cameras,
plate readers and floating car data, among many other sources. Within them, in-
ductive loops or Automatic Traffic Recorders (ATR) are one of the most frequently
selected data sources for traffic forecasting (Vlahogianni et al., 2014). ATRs count
each vehicle passing through a particular point in the network, but they often un-
dergo situations in which the output data are faulty, to the extreme of existing
long periods of time with no captured data due to prolonged reading, recording
or transmission errors. In some cases, organizations that manage the sensors and
provide data remove measurements that are considered to be samples with invalid
values, like miscounts, sensor calibration errors or round-off errors (Van Lint et al.,
2005). In other cases, the same managers aggregate or process data before pub-
lishing, a mechanism that sometimes entails errors (Zhong, Lingras and Sharma,
2004). These eventualities result in data streams with missing portions of data of
diverse sizes, having a negative effect on the forecasting models (Van Lint et al.,
2005; Chen et al., 2001; Sun, Yu and Zhang, 2004; Li et al., 2013).

Evidently, missing data unchain problems not only in traffic forecasting, but
in any prediction, regression or data analysis based on data obtained from diverse
sources (Schafer, 1997). Thus, researchers from many fields have devoted signifi-
cant efforts towards new imputation methods for missing data. As such, one of the
most straightforward approaches is to fill in the gaps with artificially created data
(Moffat et al., 2007; Kondrashov and Ghil, 2006; Shrive et al., 2006; Sainani, 2015;
Arteaga and Ferrer, 2002; Sterne et al., 2009). Although these fields are related
to atmospheric, meteorological or geophysical variables, they relate to time series
and some of their typical issues are common to traffic time series. For instance, a
thorough review of imputation techniques for CO2 flux time series is contributed
in (Moffat et al., 2007), most of which are applicable to a traffic context. Strategies
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for imputing missing data can be of paramount relevance also in traffic datasets.
As a matter of fact, the quality of data, defined as the fullness of data, has been
lately identified as one of the major challenges of road traffic forecasting, including
data-driven approaches (Vlahogianni et al., 2014).

1.1. Related Work
In the traffic forecasting domain, elaborated missing data imputing methods

were first reported in the early 2000s, when a few approaches were introduced in
(Chen et al., 2001) and later categorized by (Smith et al., 2003) in two main groups:
1) statistical, considering Expectation Maximization (Dempster et al., 1977) and
Data Augmentation algorithms; and 2) heuristic methods, comprising various av-
eraging techniques over historic data. A more recent classification by (Li et al.,
2013) divides imputation strategies into those based on prediction, interpolation
and statistical learning. The inclusion of a prediction category brings many more
methods based on considering missing data as values to be predicted. Among the
representative literature related to this category it is worth to highlight the sem-
inal work in (Chen et al., 2001), where a simple historical mean imputation was
shown to outperform no-substitution and substitution-by-zero methods when used
in combination with an Auto Regressive Integrated Moving Average (ARIMA)
and an Artificial Neural Network (ANN) as prediction models. Remarkably for
the scope of our research, this early study considered missing data densities of up
to 30%, generated uniformly at random. Authors also showed that ARIMA models
are more sensitive to missing values than their ANN counterparts.

In general, a model that relies on the time dimension of a dataset is prone to
be sensitive to missing data, as these models typically require an uninterrupted
time series as their input. On the other hand, when a dataset has a substantial
extension with very few corrupted/missing data entries, a simple strategy of re-
moving instances affected by gaps or imputing a constant value to them may suf-
fice for the forecasting method to model the traffic conditions (Vlahogianni et al.,
2014). Van Lint et al. (Van Lint et al., 2005) consider null imputation, linear
interpolation and ARIMA as filling methods prior to a State Space Neural Net-
work predictive model, dealing with up to 40% of randomly located missing data
occurring successively in intervals of length up to 30 samples. In their scenario,
simple, non-parametric imputation methods were shown to handle missing data
efficiently. Henrickson et al. in (Henrickson et al., 2015) introduce a statistical
approach that performs successfully even with 1-month-long missing data. Their
so-called predictive mean matching method draws random values to impute from a
distribution obtained from the present values, considering one measuring station.
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Probabilistic Principal Component Analysis (PPCA) method was also proposed in
(Qu et al., 2009), addressing some commonly made assumptions about missing
data. Methods relying on component analysis have been widely used ever since
(Li et al., 2013; Chen et al., 2012; Chiou et al., 2014; Asif et al., 2016; Ran et al.,
2016; Li, Li and Li, 2014) and, to the date of this survey, they embody one of the
most popular processing approaches for imputing missing data. In a comparison
among 6 methods performed by (Li, Su, Zhang, Hu and Li, 2014) authors con-
clude that PPCA is the most efficient imputing technique within their sample not
only in terms of performance, but also in ease of implementation and speed. Other
numerical approaches include 1) Bie et al.(Bie et al., 2016), where an online im-
putation method is proposed consisting of a multiple linear regression based on
data from loops that are part of the same measuring station; and 2) the similarity-
based imputation technique proposed by Zhong et al. (Zhong et al., 2006), where
daily curves with gaps are compared to candidate curves without gaps, using the
closest one – under a measure of similarity – to impute. The missing intervals
reached 12 hour length, but they only considered one type of day pertaining to a
particular season of the year. Tensor based methods have been exploited recently
to deal with missing data introducing spatial context relations (Ran et al., 2016;
Asif et al., 2016; Tan et al., 2014). These methods model the interactions between
multiple traffic variables into multi-dimensional arrays (tensors), thus allowing for
the combination of multiple correlations between the different variables to impute
missing data.

Machine learning methods are also becoming prominent in recent years, most
of them falling in the aforementioned prediction category. Kernel regression in
combination with k-Nearest Neighbors (KNN) was used in (Haworth and Cheng,
2012) to obtain forecasts of missing values using information from neighboring
stations. The study only covered input data generated on Tuesdays, but they per-
formed an analysis of the missing data characteristics present in the dataset in or-
der to generate gaps that realistically mimic the real ones. Imputation of miss-
ing data was also tackled as predictions in (Zhong, Lingras and Sharma, 2004;
Zhong, Sharma and Lingras, 2004), which proposed to build ANNs optimized via
genetic algorithms to obtain missing data estimations of up to 1 hour. Cluster-
ing approaches have been recently explored in (Tang et al., 2015) and (Ku et al.,
2016). The former introduces the widely neglected distinction between days of
the week, representing the input data as values taken on a time step of a certain
day of the week. This helps the model to distinguish patterns in different days.
A Fuzzy C-means algorithm is then used to group known days, and a genetic al-
gorithm to estimate missing data by minimizing errors between imputation and
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actual values of clusters. Likewise, (Ku et al., 2016) considers a large group of
sensors of a network and uses a K-means algorithm to cluster them based on their
average daily traffic; then they use a deep learning method – specifically, a Stacked
Denoising Autoencoder (SDAE) – to model relationships between sensors of each
cluster. Once built, the model is able to impute missing values to all the sensors
simultaneously. The performance of the model is tested over 6 days of data with
10% to 90% missing values. In a similar direction, (Duan et al., 2016) presented a
SDAE that considers weekdays and non-weekdays, different selections of sensors,
and up to 50% of missing data.

Along with all the above imputing methods, some authors derive robust models
to cope with missing data and obtain forecasts without considering any imputation
mechanism (Whitlock and Queen, 2000). Sun et al. (Sun, Yu and Zhang, 2004)
introduced a sampling Markov chain method to carry out short-term traffic fore-
casting with incomplete data with no previous imputation phase. Later, this work
was extended in (Sun et al., 2006) by using a Bayesian inference mechanism to
obtain robust predictions with incomplete data, and complemented in (Sun and
Zhang, 2007) by a selective random subspace predictor that leans on the informa-
tion supplied by surrounding sensors that are correlated to the one under study. By
exploiting this augmented and redundant information subsets with missing data
can be dismissed.

1.2. Contribution
Despite these approaches, incomplete data can become a problem – even for

data-oriented robust models – when the amount of missing values is high and spans
long periods for which no useful information can be considered to obtain a model
(Li et al., 2013). Surprisingly, despite this widely acknowledged statement the lit-
erature so far is scarce in what regards to empirical evidences of the comparative
performance of imputation strategies under different yet realistically modeled dis-
tributions for missing data. Moreover, the implications of imputed data in the per-
formance of predictive models for traffic forecasting have not been deeply studied
and analyzed. This manuscript aims at presenting and discussing strategies to deal
with missing data, as well as to obtain new insights and a comprehensive, global
view on the relevance taken by data imputation methods in traffic forecasting sce-
narios. Specifically, the mayor contributions of our work can be summarized as
follows:
• A review of the techniques for generating synthetic missing points and inter-

vals (missing data), numerically exploring their implications on the quality of
imputed data.
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• An analysis of the impact of the distribution of missing data and the imputing
methods on the performance of forecasting methods.

• Two novel imputing strategies to tackle long periods of missing data from two
different perspectives: 1) a pattern clustering-classification (PCC) algorithm
which incorporates external data that that are always available, such as days
of the week, months or holiday information, and 2) an Extreme Learning Ma-
chine (ELM, (Huang et al., 2004)) model optimized with a genetic algorithm,
that builds upon information obtained only from surrounding sensors, which we
have called spatial context sensing complete (SSC) and optimized (SSO).

• The use of an extended 2-year dataset obtained from a sensor network deployed
over the city of Madrid (Spain) and publicly available as open data (Madrid Open
Data Portal, n.d.).

The rest of the paper is organized as follows: Section 2 describes the input data,
the different artificial missing data generation techniques, the proposed imput-
ing methods, the comparison methodology, and the results evaluation approaches.
Section 3 presents and analyses the performance of the proposed methods in differ-
ent missing data scenarios. Finally, Section 4 draws concluding remarks inferred
from the obtained results and prescribes future research lines related to this work.

2. Materials and Methods

In order to extract informed conclusions from empirical findings our research
work uses traffic data obtained from a public source. Over them, artificial missing
data are created and our proposed imputation methods are applied. The following
subsections describe the source and selection criteria for the input data, the missing
data generation methods, our imputation models and the performance evaluation
procedures.

2.1. Input data selection
Input data for this research have been collected from a public source maintained

by the City Council of Madrid (Spain), which has more than 3600 ATRs deployed
through its road network, some of them in purely urban context and others in urban
freeways. Data provided by these sensors are published live every minute in its
Open Data portal (Madrid Open Data Portal, n.d.), and historically in the form of
15-minute aggregated periods. Using one-minute resolution data would require a
collecting process that would take as long as the time span of the desired dataset.
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To overcome this issue, we instead focus on historic 15-minute data of complete
years, which provides enough information to consider seasonality in a data driven
approach: one year can be used as training data for the developed models, and
any other as test data. This seasonality can be of great relevance depending on the
traffic profile of a certain location: in a business area, a model trained with data
collected in March would intuitively perform poorly when predicting values for
the month of August. On the contrary, in a residential area with less fluctuating
traffic profiles, winter data might be useful to obtain summer forecasts. A model
trained with whole-year data can, on the other hand, learn seasonal patterns and
apply them for the prediction.

By the time this research line was started aggregated published data were just
available for the years 2014 and 2015, and three months of 2016. Therefore, input
data are taken from a subset of sensors for 2014 and 2015. The choice of the sen-
sors for further analysis was made under the following criteria: a location close to
the city center, avoiding flat traffic profiles of residential areas (for which imputing
missing data would be more straightforward, potentially misleading our conclu-
sions); and the availability of data, required to assess the imputing performance
after artificially generating missing data points and intervals. Figure 1 shows all
ATRs located within a 2 kilometer radius of Puerta de Alcalá, one of the main busi-
ness areas of the city, which represents a first filter for our imputing model. The
color code portrays the available percentage of the total 35040 annual readings for
each magnetic loop during 2014, which will be subsequently used as training data
for our models. A considerable amount of sensors have less than 50% of data avail-
able in this year, and from 186 loops accessible in this area, only 21 have served
data for more than 98% of the period. This noted fact emphasizes the actual need
for robust imputation methods in this particular context of application.

PLACE FIGURE 1
The introduced spatial context imputing strategy is built upon past information

of the studied ATR and past and current data coming from neighboring sensors. In
an application context, our spatio-temporal strategy would rely on the neighboring
sensors with the most complete information available. Hence, we have taken into
account only those locations with more than 34500 observations available (more
than 98%) for year 2014 and consider them as training data, yielding the set of 21
loops depicted in Figure 1 as the first of the categories. On the other hand, the
testing of our spatial context model requires 2015 complete data from surrounding
loops. Thus, data from aforementioned locations is examined for 2015, seeking the
longest series of consecutive correct readings common to all locations. A shared
subsequence of 8463 consecutive observations (ca. three months of data) has been
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found for 13 of the sensors. One of these 13 sensors has been randomly selected
as the target ATR, while the rest N = 12 are used as context sensors. In the test
data from that sensor, artificially generated missing points and intervals will be in-
troduced (modeled as later explained in the following Subsection), and imputation
will be performed on those synthetic missing data. The rest will act as surrounding
loops. These sensors are shown in Figure 1 highlighted with a star marker, while
the loop under study is annotated as the target.

We denote the observation obtained from the i-th ATR at time index t as oit
where the time index t spans over years 2014 and 2015, and i takes integer values
from the range [0,N]. The selected target ATR for which the imputation process
will be performed corresponds to i = 0, and for notational convenience will be
labeled henceforth as s. When referring only to the context ATRs index j ∈ [1,N]
is used. The subset of observations used for training the models, i.e. with time
indexes corresponding to 2014 historic data, are denoted as Hi = {oit ∶ t ∈ 2014},
while the subset of observations with 2015 time indexes, used for test, are denoted
as Gi = {oit ∶ t ∈ 2015}. As with the individual observations, these sets are in-
stanced subsequently as Hs and Gs to specify observations taken from the target
loop s, and Hj and Gj to refer to those of the context sensors.

2.2. Generative Models for Missing Data
Before delving into the models used for generating missing entries in the con-

sidered test dataset Gs, it is insightful to note that some authors deal with incom-
plete datasets from a prediction perspective: instead of presenting a strategy to fill
in the gaps, they rather propose models to obtain forecasts overcoming gaps (Li
et al., 2013; Haworth and Cheng, 2012; Treiber and Helbing, 2002; Abadi et al.,
2015). Consequently, their score to measure the effectiveness of their methods
hinges on the performance of the chosen prediction models regardless of which
data were declared as missing. On the contrary, this work focuses on comparing
among imputing models by using a defined set of synthetically generated missing
data, as well as determining to which extent an improvement of the imputed value
yields an enhanced accuracy of subsequent traffic forecasting models.

This being said, three broad families of generative models for missing data
can be found in the literature (Little and Rubin, 2014): the so-called Missing
Completely At Random (MCAR), Missing At Random (MAR) and Not Missing
At Random (NMAR). The first two imply that there is no mechanism underneath
for generating the missing data, whereas the latter assumes a dependence of the
distribution of missing data on the complete dataset. This general classification
has been used as a reference by most researchers in the traffic context (Qu et al.,
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2009; Tang et al., 2015; Henrickson et al., 2015). Van Lint et al. (Van Lint et al.,
2005) describes three types of data failures: random, structural and intrinsic, where
the first represents stochastic reading or transmitting errors, the second consists of
gaps resulting of a sensor being offline, and the latter refers to noise, bias or errors
caused by processing the data. A similar classification is proposed in (Haworth
and Cheng, 2012), with two random (one with all independent and one with re-
lated missing points) and one structural model for missing data generation. Chiou
et al. (Chiou et al., 2014) alludes to the unlikelihood of distinguishing the source
or kind of the missing data, reducing them to two practical categories: point-wise
and interval-wise missing data, representing MCAR and MAR respectively, and
considering that intervals are groups that occur randomly. They also contemplate
a mixture of both types in their datasets. Although with different names, these
two approaches for creating missing data are common to most related contribu-
tions: some authors consider only point-wise random generation expecting that
high percentages of missing data will create long intervals, whereas the rest tend
to consider both methods, either combined or in isolation.

In this line of work, artificially generated gaps ranging from 25% to 65% of the
dataset are considered in (Falge et al., 2001), using the rest of data as an input for
their imputing methods. In (Chen et al., 2001) gaps are generated for 10%, 20%
and 30%, and in (Van Lint et al., 2005) the percentage increases up to 40%. Mof-
fat et al. (Moffat et al., 2007) produced up to 50 gap scenarios, defining 4 sizes
of gaps and making 10 combinations of each size, plus 10 scenarios with mixed
sizes, although in all cases the total amount of missing data amounted up to 10% of
the entire dataset. In (Zhong et al., 2006) 12 successive hour gaps were introduced
in different days, which allowed studying their effect and the effectiveness of their
considered imputation techniques depending on the type and hour of the day. In
(Ku et al., 2016) a clustering approach was applied to randomly generated gaps
for up to 90% of the dataset, obtaining satisfactory results even with large portions
of missing data. Interval-wise generation ranges from 24 consecutive points as in
(Chiou et al., 2014) to 1 month as in (Henrickson et al., 2015). These extended
range gaps can be regarded as a representative application of NMAR generative
models for missing data, where a failure in the sensor or the communication ham-
pers a proper collection of data for a long period.

The experiments in this work use a dataset G̃s, which is the result of artificially
removing data from Gs by both of the approaches detailed below. The elements
of G̃s are denoted as õst , namely G̃s = {õst}. Each of these values, õst , is either well
defined, i.e. equal to the observation ost , or is an artificially generated blank. For a
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given value of t a function is defined such that

δ (t) =
⎧⎪⎪⎨⎪⎪⎩

1, if õst is well defined,
0, otherwise.

(1)

In the following subsections a detailed explanation of the artificially generated
missing data methods is provided.

2.2.1. Point-wise generation
We have defined percentages (ξ ∈ {1,10,25,50,80,100} [%]) of missing ob-

servations in the whole test Gs sequence of data entries. The missing data points
or blanks are placed individually at random. When the percentage is low, missing
points are separated from each other naturally, i.e. consecutive blanks are rarely
obtained for low values of ξ. When ξ is increased, clusters of gaps emerge and it
results easier to find sequences of missing data. Due to the Gaussian distribution
of holes, even for ξ = 50% and ξ = 80%, there are no completely empty days (i.e.
days with all-blank entries). The case when ξ = 100% is uncommon in previous
works; its purpose is to test the effectiveness of methods introduced in this work
under these circumstances (3 complete months of missing data).

2.2.2. Interval-wise generation
Traffic flow observations posted in (Madrid Open Data Portal, n.d.) for the ur-

ban network of Madrid have been preprocessed beforehand and, as in many other
cases (Zhong, Lingras and Sharma, 2004), missing points could have already been
imputed by the entity managing this repository. This means that a 15-minute read-
ing integrates multiple shorter-term observations and also that, in this particular
case, missing data could be mainly due to errors in the aggregation or processing
stages. In order to generate intervals of missing data that actually reflect the be-
havior of gaps in our dataset, we have assessed the real distribution of missing data
for all the year 2015, which contains the test set of our experiments, for each of the
considered measuring points (Table 1).

PLACE TABLE 1
Despite their sparsity, the similarities found in all the considered locations,

such as the almost identical percentage of missing data or the number of gaps,
suggest that errors are probably produced in the aggregation stage and affect sim-
ilarly to groups of sensors. The most frequent gap length is 96 positions, which
corresponds exactly to one day worth of data; a further inspection of the data at
hand reveals that these gaps usually match natural days, starting at 0:00 AM and
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ending at 11:45 PM. Also the distribution of gap lengths has been examined for the
target loop: besides the 96 length gap, the most frequent lengths are 48 and 192
positions (half a day and two days of data records, respectively).

According to these characteristics of the input data, it is expected that any miss-
ing data generation strategy not producing entirely empty days (e.g. any of the ran-
dom point-wise generation percentages) will not properly represent the statistical
distribution of real gaps in this particular scenario. Consequently we have defined
6 sets of target data, each of them with gaps of 24, 48, 72, 96, 144 and 196 consec-
utive positions respectively. For each set, gaps are placed randomly and amount
13% of the total test data.

2.3. Imputing Data Methods
In this work we introduce two new approaches for imputing missing data. One

that depends on information gathered from other sensors and other approach de-
pending on external factors that define clusters of days. The following subsections
describe the details of these two methods.

2.3.1. Spatial Context Sensing
Traffic state data gathered by a sensor network supply spatio-temporal informa-

tion, as vehicles often navigate through several detectors along their trajectories1.
Intuitively, the traffic profile at a road segment should be very similar to that in an
upstream segment a τ before, whenever τ equals the average travel time between
both segments. Nonetheless, there are two main factors that put into question this
intuitive statement, e.g. the lack of continuity due to road bifurcations or parking
areas, and the speed dispersion. Features of gathered data, such as the distance
between points of collection, or the location of sensors in an urban context can
make the effect of previously mentioned factors more noticeable. Moreover, the
available temporal resolution, renders it impractical to establish a direct relation-
ship between the measurements taken by two neighboring sensors, even when they
are in two adjacent segments. To illustrate this, we hypothesize two sensors placed
in an urban street with synchronized readings at intervals of ∆T = 15 minutes. In
this scenario, any direct correlation of their traffic profile would be most probably

1The use of non-stationary sensing devices such as probing vehicles would require analyzing
spatial-temporal correlations over time among the information captured by such vehicles. As indi-
cated later in the concluding section, depending on the availability of this particular kind of data
the aforementioned research line should drive future research efforts aligned with this work.
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spurious, as in 15 minutes great variations may occur in an urban context. De-
spite this noted relational uncertainty, plenty of contributions dealing with traffic
prediction and missing data imputation (Van Lint et al., 2005; Li et al., 2013; Ha-
worth and Cheng, 2012; Ku et al., 2016; Duan et al., 2016; Sun et al., 2006; Sun,
Zhang, Yu, Lu and Xiao, 2004) have relied on spatio-temporal relationships, even
in urban contexts and with coarse-grained data, on account of different techniques
that allow researchers to find interrelation models among nearby located sensors
(Chen et al., 2003).

This being said, it is noticeable in Figure 1 that distance between the location
under study and the others is not necessarily short, i.e. they are not so closely
neighboring. Our first proposed imputing method leans on the relationships be-
tween measurements of different, not necessarily nearby, sensors at the center area
of a city. Missing data entries are imputed by means of a forecasting model that
predicts values for a sensor by learning from the information provided by other sen-
sors. As exposed in (Sun and Zhang, 2007), correlations between the traffic among
two separate links produce better forecasting results disregarding the distance (Ku
et al., 2016). Conceptually, the model retrieves data from locations (where avail-
able), being defined initially by a great deal of observations collected from each
loop. This does not necessarily produce a good model, as some of the loops can be
placed in locations with very different traffic profiles, and would constitute noise
for the imputation procedure. For this reason, an optimization step is added to the
predictive model to adjust the amount of information that each sensor contributes
to the training dataset. Figure 2 displays the overall operation of this model.

For a specific reading ost of the selected loop s at time t, a number wj of obser-
vations prior to t are taken from each surrounding loop j ∈ [1,N] towards defining
a vector of features that ultimately constitutes the dataset with the observation ost
as target variable. The window size wj of each loop can be different, suggesting a
level of influence of the surrounding of loop j in the prediction of ost . The forecast
horizon h is defined as the number of time steps in the future for which the predic-
tion is made, i.e. the difference between t and the most recent time of the samples
collected for the surrounding sensors. For instance, by setting h = 1 forecasts of
values taking place ∆T in the future.

It must be noted that this method requires a certain degree of completeness
within the historical training data {Hi} from which the model is constructed (in-
deed the selection of surrounding loops has been made accordingly), but its train-
ing phase is robust to sporadic missing data in the historic dataset. Real missing
data in the train time series are flagged and after the train dataset is built, instances
containing flags are removed, still resulting in a relatively large dataset for the sce-
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nario in hands (more than 32000 training samples available out of the initial 34500
entries in the retrieved repository). This is an important feature, as most imputing
methods require complete historic data (Asif et al., 2016), becoming a practical
issue in the majority of real life scenarios.

The selection of neighboring sensors hinges on the aforementioned aspects.
Since the distance between the target sensor and its surrounding ones is not ex-
ploited anyhow by the model, the main selection criterion is set to the level of data
completeness of the neighboring sensors. The number of selected loops is not fixed
beforehand, and is a result of the balance between the minimization of the size of
the dataset in terms of number of features, and the maximization of the variability
of inputs provided by different sensors. All sensors available in the central area of
Madrid were considered for this research, but after disregarding those with more
than 2% of missing data, only 12 remained for subsequent processing. The flexi-
bility of this method would allow selecting sensors from a larger area, should the
initial ones not comply with the completeness constraint.

PLACE FIGURE 2
The combination of diverse kinds of Artificial Neural Networks (ANNs) and

other machine learning methods with heuristic optimization algorithms has been
extensively explored in previous works (Vlahogianni et al., 2014), often yielding
more responsive results to changes in data than time-series forecasting. In this
scenario, our imputing method is built upon the predictions obtained by an Extreme
Learning Machine (ELM) model, which is trained with a dataset built by following
the scheme depicted in Figure 2. The general operation of the model is similar to
that in our previous works (Laña, Del Ser, Vélez and Oregi, 2017; Laña, Del Ser
and Vélez, 2017), introducing in this case the inputs from surrounding sensors. A
bio-inspired heuristic solver is introduced to find the optimal window sizes wj of
each sensor j. This procedure can reduce considerably the processing time, and
provide insights on the importance of some of the sensors to predict and impute the
missing values of the target location, if any of the optimized window sizes equals
0.

Initially, a maximum value of 50 steps (12.5 hours) is defined for the window
size wj of all 12 surrounding loops around the target loop, rendering a dataset
of 600 features and around 32000 instances. The population of the bio-inspired
heuristic solver is composed of the window sizes of each surrounding loop, and
in each generation of the optimization algorithm, the prediction model is built,
trained and validated, obtaining an RMSE performance metric. When the opti-
mization process ends, the window sizes found in the best generation are the ones
that potentially yield the best RMSE score. The ELM model is then trained con-
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sidering these windows on the {Hi} dataset, and tested on the {Gi} dataset as a
single hold-out. This produces forecasts for all values of the Gs series, as if the
missing data were the 100%, making this method an interesting option under such
circumstances. Values obtained for positions where a gap was generated are then
compared to the actual observation, and assessed via the metrics discussed below.

2.3.2. Pattern Clustering and Classification
The second method proposed in this paper involves only data from the target

loop. As in the previous technique, a set of samples prior to the period at hand
is required for training. This method is designed to produce data in a complete
day fashion, as opposed to point-wise filling counterparts. Several schemes in
the literature (Zhong, Lingras and Sharma, 2004; Chiou et al., 2014; Ran et al.,
2016; Li, Su, Zhang, Hu and Li, 2014; Ku et al., 2016) involve splitting the series
of data in lots of data per day. The pattern clustering and classification imputing
method, as well as two of the proposed comparison methods, perform this splitting
of incoming data into day-wise vectors:

os,d = [ostd , o
s
td+1, . . . , o

s
td+P−1] , (2)

where ostd is the value of the observation captured at sensor s and time td, being td
the first time index of day d; and P = 96 is the number of observations obtained
within a day for a capture period of ∆T = 15 min. Following the dataset division
criterion explained in Subsection 2.1, we have defined a training dataset with Hs
data,H = {os,d ∶ td ∈ 2014} and a dataset with G̃s data G̃ = {õs,d ∶ td ∈ 2015}.

In general, as G̃s includes artificially generated blanks, each vector õs,d has
P s,d ≤ P valid (non blank) values given by

P s,d ≐
P−1
∑
p=0

δ(td + p). (3)

Based on this definition we establish a metric of similarity between any vector
fromH and any vector from G̃:

S(d, d′) ≐ 1

P s,d′

¿
ÁÁÀP−1
∑
p=0

δ(td′ + p) (ostd+p − õstd′+p)
2
, (4)

where d ∈H and d′ ∈ G̃.
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2.3.2.1. Clustering. Once the input data are separated in days, a clustering algo-
rithm is performed overH, obtaining groups of days with similar set of measure-
ments. Performing a clustering process over a space with such a large number
of dimensions requires large computational resources. Furthermore, the overall
process could be biased by localized, high-frequency noise, producing too many
groups for the overall cluster space to be useful. To overcome this issue the dataset
is preprocessed by averaging everyK samples.This averaging process not only re-
duces the number of dimensions of the space over which to perform the clustering
process from P down to ⌈P /K⌉, but also smooths out any local disturbance the
measurements may undergo, reducing the chances of producing too many clusters
(more than the necessary to represent the actual traffic patterns).

Two clustering algorithms have been considered to produce groups within the
feature space based on the above similarity metric: DBSCAN (Ester et al., 1996)
and Affinity Propagation (Frey and Dueck, 2007). DBSCAN is a density based
clustering algorithm which delimits clusters by regions where the density of sam-
ples is high, labeling points located in low-density regions as outliers. Affinity
Propagation is a clustering algorithm based on exchanging messages between the
different data points. It finds “exemplars”, members of the input set that are repre-
sentative of clusters. Both methods produce similar results when their parameters
are chosen appropriately, therefore only one of them (DBSCAN) has been used for
the experiments.

As opposed to other clustering techniques such as K-Means, DBSCAN does
not require the number of clusters as an input. Instead, its parameters have been
tuned through an off-line optimization process aimed to reduce the number of noise
instances (outliers) while maximizing the number of well-conformed clusters. A
technique such as K-Means would always assign all data instances to a cluster dis-
regarding whether their dissimilarity to the closest cluster calls for another cluster
to be spanned. Thus, this method is not suitable for a problem in which the num-
ber of clusters cannot be easily established. The parametrization of density-based
clustering schemes such as DBSCAN allows for a fine-grained determination of
clusters and the isolation of overly dissimilar data instances as noise clusters. A
balance between these two extremes is sought: the cluster space should discrim-
inate as many relevant data patterns in the dataset (cohesive clusters, with high
intra-cluster and low inter-cluster similarity), and discard those instances (namely,
daily traffic data traces) notably dissimilar to any other in the dataset. As a result,
the DBSCAN clustering model is configured with eps = 6 (maximum Euclidean
distance between samples belonging to the same cluster) and minPts = 5 (mini-
mum number of data instances for a cluster to become meaningful, i.e. not noise).
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The result of the clustering algorithm produces a partitioning ofH intoC clus-
ters {Hc}Cc=1. ClusterHc is represented by its centroid os,⊙c = [os,⊙c

td
, . . . , os,⊙c

td+P−1],
which is computed by taking the average of its member observations, i.e. the p-th
element of the centroid is computed by taking the average of the p-th elements of
all the members of that cluster:

os,⊙c
p = 1

∣Hc∣
∑
d

ostd+p (5)

where os,d ∈Hc and ∣ ⋅ ∣ denotes cardinality of a set.

2.3.2.2. Classification. The previously defined clustering process would suffice
for imputing missing values, and in fact it will be used as a comparison method
in the experiments later discussed, choosing the closest os,⊙c to the element of G̃
where the imputation is needed. However, when there is a particular day for which
all measurements are missing – i.e. P s,d = 0, the clustering process is not able to
assign it to any of the clusters. In order to overcome this shortcoming, external
information independent from the traffic data is incorporated to the dataset, and
an algorithm is built over the C clusters obtained in the method explained in the
previous subsection. A supervised learning classifier is trained with cluster in-
dexes as classes, and over those features that do not depend on the actual traffic
observations. We have designated as features the day of the weekD, the monthM
and a binary feature bH to indicate whether a day is a bank holiday (Laña et al.,
2016). These time-related features are very relevant to group traffic by days, as
traffic patterns are mostly daily cyclical (Whitlock and Queen, 2000). Other ex-
ternal features such as the weather or the celebration of regular events could also
be included to obtain a more precise classification. Thus, a dataset with 3 features
and C classes is composed fromH, which is used to train a supervised classifier
to estimate the cluster assignment of a day belonging to G̃.

The supervised learning model utilized for the regression problem posed in this
paper is the so-called Random Forest (RF), which relies on the bagging concept
(Ho, 1995; Breiman, 2001) to create a diverse set of regressors by introducing
randomness in the construction of an ensemble of tree learners. This procedure
has been shown to decrease the variance of the model without increasing its bias,
as weak learners are fed with different training sets that consequently decorrelate
their structure and provide diversity to the ensemble. Imputation is finally done
by equaling missing entries of the tested day to those of the centroid os,⊙c of the
cluster to which it is predicted to belong. Specifically, if õs,d denotes a test day
for which P s,d missing entries are to be imputed, the proposed method creates a
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vector with components:

ôstd+p = { os,⊙c
p if δ (td + p) = 0,
õstd+p = ostd+p otherwise. (6)

The whole clustering classification process is graphically summarized in Figure 3.
PLACE FIGURE 3

2.4. Methods for Comparison
A selection of the most common methods have been used to appraise the per-

formance of the ones here proposed. Early research in this field (Chen et al., 2001;
Smith et al., 2003) adopted some of the basic imputing methods that have been used
ever since for comparison: historical average, average over surrounding locations,
average over close timestamps, or Expectation-Maximization (EM) methods. The
diversity of imputation methods reported in the literature has grown lately, achiev-
ing high levels of complexity, but in general they continue to be benchmarked
against the portfolio of imputing techniques mentioned above on account of their
good performance when missing data entries are not profuse. All comparison
methods are based on data taken from the target loop (Hs and Gs), and do not
use any context sensor information. Following this common practice, we have
compared our proposed methods to 5 techniques of increasing complexity:

• Basic Imputation (BASIC): this naı̈ve approach consists of imputing a constant
value for all missing data, usually 0 (Chen et al., 2001) or a value based on statis-
tical characteristics of the dataset, commonly the average of non-missing obser-
vations (Chen et al., 2001; Van Lint et al., 2005; Sun, Yu and Zhang, 2004; Asif
et al., 2016). Although imputed values would probably differ from the actual
ones, this method provides effortlessly a dataset without missing data, allowing
the application of forecasting techniques in a straightforward manner.

• Linear Interpolation (INT): a reliable technique when missing data are scarce
and individual (Van Lint et al., 2005). Imputing gaps of a small amount of posi-
tions with linear interpolation is fast, easy, produces fairly accurate values, and
provides a smooth traffic profile. However, it degrades severely when the length
of intervals with missing data increases.

• Mean Day Variation (MDV): this is one of the most common techniques to im-
pute missing data, which resorts to averages of the available observations at the
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same time index of the day to compute the value to fill in the missing entry (Mof-
fat et al., 2007). In order to quantify the impact of the ratio ξ of missing values
in the performance of this method, we have considered 2 possible input datasets:
Hs dataset (corresponding to data captured in 2014 without any missing values)
(MDV14) and G̃s (corr., 2015 with artificial missing data) (MDV). The latter
case depends on the quantity of missing data, and the performance of MDV is
expected to degrade as the ratio ξ of missing values increases.

• 1-Nearest Neighbor (1NN): this method, similarly to the clustering-classification
scheme proposed in this paper, relies on the day-splitting paradigm described in
Subsection 2.3.2. Conceptually similar to the method proposed in (Zhong et al.,
2006), days with missing data from G̃ are compared to those in the dataset with
complete days H, looking for the closest one under the measure of similarity
given in Expression (4). Missing values within the incomplete sample õs,d are
filled with those of its closest instance inH.
This procedure is simple to implement and computationally efficient, but presents
several potential problems: 1) whenH is large finding the minimum through a
exhaustive search can be time demanding; 2) when trying to impute values for
a day with completely different measurements than any of the days in H the
process will produce values far from the real ones; 3) this procedure might be
highly influenced by high frequency noise in the data sample.

• Clustering (CL): the use of clustering techniques has become frequent in the
field of missing data imputation (Tang et al., 2015; Ku et al., 2016). For com-
parison purposes we consider a clustering algorithm defined analogously to the
one described in Subsection 2.3.2. In this standard clustering, instances from the
G̃ dataset are mapped directly to the clusters defined with theH dataset, instead
of creating a proxy classifier, which in turn represents the core contribution of
our clustering method. To this end, clusters are selected based on the minimum
distance – as per (4) – between the instance to be imputed and the cluster cen-
troids. Missing data of a particular day are filled with the averaged values of the
cluster it belongs to. As other methods that rely on partitions of the dataset on
a per day basis, this technique is expected to fail when entire days of data are
missing.

2.5. Quantifying the Imputation Performance
Missing data imputation should not be regarded as an end in itself, but a neces-

sary step to reconstruct data and perform forecasts. In contrast with some authors
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that develop robust techniques to predict traffic regardless the missing data (Sun,
Yu and Zhang, 2004; Whitlock and Queen, 2000; Sun et al., 2006; Sun and Zhang,
2007), most authors validate the imputing results by measuring their distance to
real data, but they do not test the prediction accuracy of methods that use im-
puted data as inputs. In some cases, an imputation strategy can provide a marginal
improvement over traditional approaches, but at a high computational cost. This
efficiency trade-off could be worthless in practice should the differences between
prediction performances with and without imputed data be negligible.

For this reason, besides the usual imputation error analysis, we propose an
alternative methodology for assessing the prediction performance for each method.
Once missing observations have been imputed over G̃s, an imputed dataset Ĝs is
produced for each value of ξ (ratio of missing observations) andL (interval length).
Each dataset Ĝs is split in two chunks: one containing the first 80% of observations
(Ĝtrn, training) and the second with the remaining 20% (corr. Ĝtst, test), for which
imputed data ôst are replaced with their respective real values ost . Thus, Ĝtst is for all
cases the same chunk of real test data, whose observations belong to Gs. A Random
Forest regression model is then trained on each of the Ĝtst datasets, after which
predictions are obtained and tested against Ĝtst. The prediction scores achieved
with each input set of data (with original or imputed values) are compared to each
other, providing insights on how the accuracy of every technique propagates to the
prediction score of predictive models when the imputation is used to reconstruct
datasets for traffic forecasting.

PLACE FIGURE 4
As depicted in Figure 4 the model is built analogously to the one presented in

Subsection 2.3.1: a window of w observations (fixed to 20) predicts the value of
the observation h = 1 steps in the future.

3. Results and Discussion

After conducting the experiments described in previous sections, we examine
the performance of the proposed missing data imputing techniques in compared
with the methods enumerated in Subsection 2.4. For the sake of statistical char-
acterization, 20 independent runs have been completed for each percentage and
missing interval distribution with different random positions of the missing points
and intervals. Thus, each missing data imputation method is evaluated against 20
different sets of missing data ratios ξ and length interval L, except for ξ = 100,
as no different combinations of missing data can be performed when all the data
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are missing. The score utilized to evaluate results is the Root Mean Squared Error
(RMSE), defined as:

RMSE ≐
¿
ÁÁÀ 1

N
∑

∀t∶δ(t)=0
(ost − ôst)2, (7)

where N ≐ ∑t∈2015 (1 − δ(t)) denotes the number of imputed observations in G̃s.
Also, the coefficient of determination R2, which shows the likelihood of real

values to fall within the predicted ones, is calculated according to:

R2 ≐ 1.0 −
∑

∀t∶δ(t)=0
(ost − ôst)

∑
∀t∶δ(t)=0

(ost − ōst)
(8)

These two evaluation metrics are averaged over the 20 experiments, obtaining
averages and standard deviations reported in Tables 2 and 3 for RMSE and Ta-
bles 4 and 5 for R2. The imputing methods are identified as defined in Subsection
2.4, using also SSC for Spatial context sensing complete (without optimization of
window size), SSO for Spatial context sensing optimized and PCC for Pattern clus-
tering and classification. Estimations are shown considering 1 significant figure,
following the criteria described in (Hildebrand, 1987).

PLACE TABLE 2
PLACE TABLE 3 AROUND HERE
PLACE TABLE 4 AROUND HERE
PLACE TABLE 5 AROUND HERE Results displayed in both sets of tables

lead to similar conclusions. When missing data consist of percentages of random
missing points, most methods perform reasonably well even when percentage of
gaps ξ reaches 80%. As expected, when all data are missing (ξ = 100%), any
technique relying in the availability of these data fails. Basic imputing does not
yield good results in any case, as we are comparing values obtained from the dis-
tribution defined by real traffic to a constant. Mean-based methods produce an
outcome with stability along different values of ξ and L, due to the averaging pro-
cess that uses all the measurements available for a certain time frame of the day,
disregarding the differences among types of days, which are remarkable in these
central locations of the city. Linear interpolation outperforms the rest of methods
in almost any scenario, which reflects the main inconvenient of this random miss-
ing data generation method: empty positions are distributed uniformly, and rarely
in lengthy groups, allowing a simple linear interpolation method to produce good
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estimations. But this randomly uniform distribution does not commonly represent
the real disposition of gaps.

This issue is observed more clearly when inspecting Tables 3 and 5, where re-
sults for any of the comparison methods (except for the mean-based ones and the
basic imputing) degrade severely as the length of gaps L is increased. With linear
interpolation, this effect is specially noticeable: having 48 missing entries (half a
day), the interpolation is made between two points within which great traffic varia-
tions may occur, hence traffic data in between cannot be modeled by a line. Above
that size of gap, this technique is unable to produce acceptable values. Clustering
and 1NN similarity interpolations behave similarly in both situations: with point-
wise missing data generation, they are able to model fairly well traffic with the data
they have available for each day, even with a 80% of missing data. When interval-
wise gaps are 1 day long (L = 96 positions) their performance decays; no data are
available to establish their similarity, thus they are assigned to random days. Fig-
ure 5 shows a boxplot for both kinds of gap generation scenarios, considering an
interval of L = 96 positions, being this the most common, and a 10% of missing
data, being this percentage the most similar to the total amount of missing data in
the interval-wise mode (13%). This figure displays clearly that for a very similar
volume of missing data, the way in which gaps are generated affects severely the
RMSE results, except for the more robust techniques, such the ones proposed in
our work (SSC, SSO, PCC).

PLACE FIGURE 5
In contrast with the performance deterioration that all comparison methods

suffer when long intervals or complete absence of data are introduced, our pro-
posed methods achieve a stable operation independent of the abundance or size
of data gaps. Among them, spatial context sensing, based in measurements from
surrounding sensors is more resilient to the unavailability of data during a certain
time frame. Two versions of this scheme have been tested: one with “complete”
sets of measurements (50 sized time windows for each surrounding loop, resulting
in a dataset of 600 features), and one optimized by using the bio-inspired heuristic
wrapper described in Subsection 2.3.1. In the latter, optimized window sizes are
never greater than 6, and for some of the loops are 0, indicating in these cases the
null importance of those sensors for the imputation and subsequent prediction pro-
cedures. This reduces the number of features to 40 on average, and speeds up the
prediction algorithm used for imputing data: in an Intel i7 machine, the running
time of SSO is 50% of the time required to run SSC.

Besides this lower computational cost, the outcomes of both versions of the
method in terms of imputing performance are very similar; therefore, a Wilcoxon
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test has been run in order to examine if such a difference is statistically significant.
The p-values of this test are shown in Table 6. They demonstrate that within a
95% confidence interval, only in some of the point-wise percentage scenarios the
results provided by SSO are significantly different from those obtained with SSC.
Even in those cases, maximum error differences amount up to only 6 vehicles per
hour. Thus, the complexities involved in the optimization of the algorithm could
be avoided when the computation capacity is not a practical limitation.

PLACE TABLE 6
PCC also performs robustly in all considered situation. Moreover, its operation

is more efficient in terms of computational complexity, with runtimes in the order
of 94% relative to the time taken by SSC for the same scenario. A Wilcoxon test
has been also performed to compare its results to those of spatial context sensing
without optimization, rendering p-values shown in Table 7. As for the previous two
methods, the statistically significant differences are found for the point-wise miss-
ing data, for which PCC performs better. Aside from this particular performance
gain, it is remarkable that this method can be further improved by adding more
traffic-agnostic features that in theory could improve the classification process.

PLACE TABLE 7

3.1. Prediction-wise imputation performance
According to the results discussed above, naı̈ve similarity or interpolation meth-

ods should be used when missing data consist of short gaps, while the longer sized
gaps would require alternative methods. Nonetheless, when the imputed data are
analysed from the perspective of their ability to obtain accurate predictions, this
intuition may change as discussed next:

PLACE TABLE 9
PLACE TABLE 8
Tables 8 and 9 shows the averaged RMSE and its standard deviation for 20

forecasts performed for each method and missing data model, following the pro-
cess described in Section 2.5. With this evaluation approach, the most relevant
matter is the abundance of missing data, as for low percentages the rest of data
are enough to build a good forecasting model, regardless the quality of imputed
values. This is clearly observed in Table 9, which represents 13% missing data for
all cases. Although up to 2-day long gaps are created in this experiment, and even
if we know that imputed values are inaccurate for some of the methods, all of them
perform well, because the 87% remaining real data are sufficient to train properly
the regression model. The same algorithm applied to a dataset with no missing
data returns a score equal to RMSE = 74 ± 2, very similar to those presented in
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Tables 8 and 9. Undoubtedly, this good performance owes much to the way in
which machine learning algorithms operate and model data. When imputed data
are “bad”, they are essentially noise for the training, hence the forecasting perfor-
mance will also depend on the algorithm’s ability to deal with noise. Similarity
methods (1NN and Clustering) impute a default day when they are not able to find
a similarity pattern. This default day comes from the same loop and it is proba-
ble that its profile is similar to the missing data, therefore the acceptable results of
completely missing dataset. On the contrary, for great amounts of missing data,
performance degrades for naı̈ve methods, but our proposed algorithms generate
fairly robust predictions.

4. Conclusions and Future Work

In this work we have investigated into missing data imputation strategies for
traffic data, covering all stages of the procedure, from the creation of datasets with
artificial gaps to the evaluation of the obtained results. We have also presented two
novel missing data imputing methods based in contextual and historic information
of a certain traffic measuring point, aimed to obtain accurately imputed values
when missing data are abundant or presented in long intervals. Real data obtained
from the traffic sensor network deployed in the city of Madrid (Spain) reveal that
a noticeable proportion of the locations present lengthy intervals of missing data,
making it necessary to design an efficient imputation strategy for scenarios with
these missing data characteristics.

First, the missing data model has been approached from the perspective of the
allocation of artificially created missing points. Missing data distribution can vary
substantially among different ATRs in a city, and much more among cities, thence
a proper examination of the real gap distribution of a dataset should be performed
prior to the generation of artificial gaps. For this particular dataset we have found
out that simple random point-wise generation strategies fail to represent the true
nature of the gaps. In fact, some of the evaluated imputation techniques perform
reasonably good with high missing data percentages, but decay quickly when the
length of missing data is increased, even if the total amount of gaps is low. A fair
amount of the literature reviewed in this manuscript does not test validate models
with long intervals, so it is not possible to know how they would perform if that
were the case.

Furthermore, the evaluation of imputation results has been discussed. Beyond
the similarity measurement of performance that is found in most of the literature,
(based on comparing the imputed value to the actual one), we have gauged the
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imputation performance by considering the forecasting ability of a dataset built
with those imputed data. As a result, we have concluded that if the prediction
technique is based on a machine learning approach capable (to a certain extent) of
dealing with noisy data, and the amount of imputed data is low (less than 10%),
the imputed values will have a low impact in the final forecasting performance.
Even when the imputed values are very dissimilar to real ones (due to the use of a
naı̈ve imputing technique), they will represent a low amount of noise in the whole
dataset, but a well trained forecasting method still can obtain accurate predictions.
Being these forecasting techniques currently popular, a previous analysis of the
distribution and profusion of missing data could save a significant processing time
in future contributions dealing with this topic.

The presented imputation methods have produced steady outcomes regardless
the distribution and size of missing data, and indifferently to the evaluation proce-
dure. Our spatial context sensing algorithm has proven that with enough contextual
information, it is possible to impute missing values even when no data is available.
This reinforces the notion of relations among traffic profiles registered over an en-
tire city, even though they are not directly upstream or downstream correlated. On
the other hand, our clustering approach highlights again the relevance of external
features to obtain traffic patterns, an easily obtained input that is scarcely used in
traffic forecasting and imputing research. Three simple temporal characteristics
have been enough to obtain a good performance of the clustering-classification al-
gorithm, but in theory, other external features such as sports events, demonstrations
or spatial information about locations of interest could enhance further the predic-
tive power of these patterns. Both introduced techniques require big amounts of
previous or spatial context data that are not always available, but their operation is
flexible enough to take data from any existing sources.

In light of the experiments, we consider that adaptive techniques should be im-
plemented for data imputing, using a mixture of computationally efficient meth-
ods, such as linear interpolations for individual or short interval missing values,
and more complex algorithms for filling in long intervals of missing data. This
hybridization will lie at the core of future research lines stemming from this work.
Furthermore, traffic prediction techniques are gradually steering towards online
learning models over data streams, due to the presence of non-stationarities within
the data and the need for incremental learning models capable of learning effi-
ciently from fast-arriving data streams. The added difficulty yielded by this change
of paradigm calls for the study of online imputation schemes suited to deal with
concept drifts and adaptive windowing. In addition, the consideration and fusion
of spatial-temporal information provided by probing vehicles will stimulate further
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developments around online learning, with emphasis on how to dynamically infer
the predictive context of the traffic at a certain location from the captured data.
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ABSTRACT

Vehicle flow forecasting is of crucial importance for the management of road

traffic in complex urban networks, as well as a useful input for route planning al-

gorithms. In general traffic predictive models rely on data gathered by different

types of sensors placed on roads, which occasionally produce faulty readings due

to several causes, such as malfunctioning hardware or transmission errors. Filling

in those gaps is relevant for constructing accurate forecasting models, a task which

is engaged by diverse strategies, from a simple null value imputation to complex

spatio-temporal context imputation models. This work elaborates on two machine

learning approaches to update missing data with no gap length restrictions: a spa-

tial context sensing model based on the information provided by surrounding sen-

sors, and an automated clustering analysis tool that seeks optimal pattern clusters

in order to impute values. Their performance is assessed and compared to other

common techniques and different missing data generation models over real data

captured from the city of Madrid (Spain). The newly presented methods are found

to be fairly superior when portions of missing data are large or very abundant, as

occurs in most practical cases.
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Figure 1: Automatic traffic recorders (ATRs) in the center of Madrid, colored by their data avail-
ability during 2014 (in % of valid 15-minute intervals over the year).
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every technique in a context of traffic forecasting.
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Figure 5: Boxplot of imputation performances for both gap generation models.
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ID Avg. flow # Missing entries Missing data # intervals ⟨L⟩ mode(L)
10006 420 4626 13.2% 27 135.70 96
10018 134 4576 13.1% 26 139.12 21
10023 143 4550 13.0% 25 143.83 96
10030 82 4713 13.5% 28 133.89 96
13026 131 4559 13.0% 26 138.44 96
13032 474 4575 13.1% 26 139.08 21
18018 332 4622 13.2% 27 135.54 96
19011 683 4791 13.7% 28 136.78 21
21007 204 4556 13.0% 26 138.32 96
90033 317 4640 13.2% 28 131.19 96
90034 236 4640 13.2% 28 131.19 96
90035 198 4639 13.2% 28 131.15 96
90041 233 4636 13.2% 28 131.04 96

Table 1: Analysis of actual missing data distribution. Column names stand for loop ID (as per the
naming convention of the repository), yearly average flow of cars measured in vehicles/hour, total
number of missing points, percentage of total missing data (considering 35040 samples), number
of intervals grouping missing points, average gap length measured in samples ⟨L⟩, statistical mode
of the length of the gaps L
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Method 1 % 10 % 25 % 50 % 80 % 100 %
BASIC 420 ± 30 420 ± 10 438 ± 9 489 ± 5 586 ± 2 661
INT 65 ± 6 70 ± 5 75 ± 4 92 ± 5 175 ± 9 500
MDV 260 ± 30 250 ± 10 248 ± 6 250 ± 5 251 ± 3 661
MDV14 260 ± 30 250 ± 10 249 ± 6 249 ± 3 248 ± 1 249
1NN 110 ± 20 107 ± 6 107 ± 4 109 ± 3 121 ± 3 390
CL 110 ± 20 117 ± 8 117 ± 5 116 ± 2 121 ± 3 400
SSC 140 ± 20 133 ± 7 134 ± 4 133 ± 2 132 ± 1 132
SSO 130 ± 20 128 ± 6 127 ± 3 126 ± 2 126.6 ± 0.6 126
PCC 120 ± 20 122 ± 8 124 ± 5 122 ± 2 122 ± 1 122

Table 2: RMSE results for different percentages ξ of point-wise missing data. In this and following
tables, results are shown as mean±standard deviation, and statistically best results (determined by
a Wilcoxon test with 95% confidence interval) are highlighted in bold.
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Method 24 48 72 96 144 192
BASIC 420 ± 40 410 ± 20 420 ± 30 440 ± 30 420 ± 40 420 ± 30
INT 300 ± 50 430 ± 50 470 ± 70 560 ± 80 490 ± 60 530 ± 70
MDV 260 ± 30 240 ± 30 240 ± 30 240 ± 20 260 ± 20 240 ± 20
MDV14 250 ± 20 240 ± 20 240 ± 20 250 ± 10 260 ± 20 250 ± 20
1NN 130 ± 20 130 ± 10 170 ± 30 230 ± 50 260 ± 50 310 ± 60
CL 120 ± 20 140 ± 10 160 ± 30 240 ± 60 270 ± 40 320 ± 50
SSC 130 ± 20 130 ± 20 120 ± 10 121 ± 6 122 ± 8 120 ± 8
SSO 123 ± 7 124 ± 4 124 ± 5 123 ± 5 123 ± 6 124 ± 7
PCC 120 ± 10 120 ± 10 120 ± 10 122 ± 9 120 ± 10 122 ± 9

Table 3: RMSE results for different length L intervals of missing data.
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Method 1 % 10 % 25 % 50 % 80 % 100 %
BASIC −0.009 ± 0.007 −0.018 ± 0.008 −0.1 ± 0.01 −0.38 ± 0.02 −0.98 ± 0.01 −1.52
INT 0.975 ± 0.006 0.972 ± 0.004 0.968 ± 0.003 0.951 ± 0.005 0.82 ± 0.02 −0.17
MDV 0.60 ± 0.09 0.65 ± 0.02 0.65 ± 0.02 0.64 ± 0.02 0.635 ± 0.009 −1.52
MDV14 0.61 ± 0.06 0.65 ± 0.02 0.64 ± 0.01 0.64 ± 0.009 0.644 ± 0.003 0.64
1NN 0.93 ± 0.02 0.935 ± 0.005 0.934 ± 0.004 0.931 ± 0.003 0.916 ± 0.005 0.11
CL 0.92 ± 0.03 0.923 ± 0.008 0.922 ± 0.006 0.922 ± 0.003 0.915 ± 0.004 0.10
SSC 0.89 ± 0.04 0.899 ± 0.009 0.896 ± 0.007 0.898 ± 0.004 0.899 ± 0.002 0.90
SSO 0.90 ± 0.03 0.91 ± 0.01 0.907 ± 0.005 0.908 ± 0.003 0.907 ± 0.001 0.91
PCC 0.91 ± 0.04 0.915 ± 0.008 0.912 ± 0.006 0.914 ± 0.004 0.914 ± 0.002 0.91

Table 4: R2 results for different percentages ξ of point-wise missing data.
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Method 24 48 72 96 144 192
BASIC −0.03 ± 0.04 −0.03 ± 0.04 −0.04 ± 0.03 −0.04 ± 0.02 −0.03 ± 0.04 −0.03 ± 0.02
INT 0.4 ± 0.1 −0.2 ± 0.3 −0.4 ± 0.4 −0.7 ± 0.4 −0.4 ± 0.3 −0.7 ± 0.4
MDV 0.6 ± 0.1 0.6 ± 0.1 0.6 ± 0.1 0.7 ± 0.1 0.6 ± 0.1 0.64 ± 0.09
MDV14 0.61 ± 0.08 0.64 ± 0.07 0.64 ± 0.08 0.66 ± 0.08 0.60 ± 0.08 0.64 ± 0.06
1NN 0.90 ± 0.02 0.89 ± 0.02 0.82 ± 0.07 0.7 ± 0.1 0.6 ± 0.2 0.4 ± 0.2
CL 0.91 ± 0.02 0.89 ± 0.02 0.83 ± 0.07 0.7 ± 0.1 0.6 ± 0.1 0.4 ± 0.20
SSC 0.90 ± 0.03 0.88 ± 0.04 0.91 ± 0.02 0.92 ± 0.01 0.91 ± 0.02 0.91 ± 0.01
SSO 0.91 ± 0.02 0.90 ± 0.01 0.91 ± 0.01 0.92 ± 0.01 0.91 ± 0.02 0.91 ± 0.01
PCC 0.92 ± 0.02 0.91 ± 0.02 0.91 ± 0.02 0.92 ± 0.01 0.91 ± 0.01 0.91 ± 0.01

Table 5: R2 results for different length L intervals of missing data.
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Methods 1% 10% 25% 50% 80% 100% 24 48 72 96 144 192
SSC vs SSO 0.09 0.02 < 10−4 < 10−4 < 10−4 < 10−4 0.41 0.1 0.05 0.11 0.63 0.09

Table 6: Wilcoxon test p-values showing statistical significance of differences between RMSE
results of SSC and SSO.
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Methods 1% 10% 25% 50% 80% 100% 24 48 72 96 144 192
SSC vs PCC 0.01 < 10−3 < 10−4 < 10−4 < 10−4 < 10−4 0.07 0.09 0.15 0.58 0.82 0.28

Table 7: Wilcoxon test p-values showing statistical significance of differences between RMSE
results of SSC and PCC.
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Method 1 % 10 % 25 % 50 % 80 % 100 %
BASIC 80 ± 2 103 ± 4 154 ± 10 240 ± 20 350 ± 20 618
INT 77 ± 2 78 ± 2 76 ± 2 78 ± 1 85 ± 1 400
MDV 81 ± 3 91 ± 4 107 ± 4 123 ± 10 130 ± 10 618
MDV14 82 ± 5 92 ± 3 107 ± 4 128 ± 7 135 ± 6 171
1NN 78 ± 2 82 ± 4 85 ± 4 87 ± 3 83 ± 3 76
CL 78 ± 2 81 ± 5 81 ± 3 84 ± 3 86 ± 3 95
SSC 80 ± 3 86 ± 4 91 ± 4 95 ± 3 97 ± 3 89
SSO 79 ± 2 81 ± 3 85 ± 3 87 ± 3 87 ± 2 86
PCC 78 ± 2 79 ± 4 81 ± 3 86 ± 4 94 ± 8 89

Table 8: RMSE prediction results for different percentages of point-wise missing data.
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Method 24 48 72 96 144 192
BASIC 78 ± 2 78 ± 2 78 ± 2 77 ± 2 76 ± 2 78 ± 3
INT 75 ± 2 75 ± 2 76 ± 3 77 ± 2 77 ± 2 77 ± 2
MDV 76 ± 2 75 ± 1 75 ± 2 75.0 ± 0.8 76 ± 1 76 ± 1
MDV14 74 ± 1 74 ± 1 74 ± 1 74 ± 1 73.7 ± 0.8 74 ± 1
1NN 79 ± 3 79 ± 2 76 ± 2 76 ± 2 76 ± 2 76 ± 3
CL 77 ± 1 76 ± 2 73 ± 2 74 ± 2 74 ± 2 73 ± 2
SSC 76 ± 2 77 ± 1 77 ± 1 77 ± 1 77 ± 1 76 ± 1
SSO 78 ± 2 78 ± 3 78 ± 2 78 ± 2 78 ± 2 77 ± 2
PCC 78 ± 2 78 ± 2 78 ± 2 78 ± 2 78 ± 2 78 ± 2

Table 9: RMSE prediction results for different length intervals of missing data.
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FIGURE CAPTIONS

Figure 1 Automatic traffic recorders (ATRs) in the center of Madrid, colored by their
data availability during 2014 (in % of valid 15-minute intervals over the
year).

Figure 2 Training of a forecasting model through window-size optimization and Ex-
treme Learning Machine (ELM) regression models. Optimized parameters
of this model are used after to obtain predictions that act as imputed values.

Figure 3 Clustering-Classification process.

Figure 4 Proposed method for evaluating the performance and quality of the values
imputed by every technique in a context of traffic forecasting.

Figure 5 Boxplot of imputation performances for both gap generation models.
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TABLE CAPTIONS

Table 1 Analysis of actual missing data distribution. Column names stand for loop
ID (as per the naming convention of the repository), yearly average flow
of cars measured in vehicles/hour, total number of missing points, percent-
age of total missing data (considering 35040 samples), number of intervals
grouping missing points, average gap length measured in samples ⟨L⟩, sta-
tistical mode of the length of the gaps L

Table 2 RMSE results for different percentages ξ of point-wise missing data. In this
and following tables, results are shown as mean±standard deviation, and
statistically best results (determined by a Wilcoxon test with 95% confidence
interval) are highlighted in bold.

Table 3 RMSE results for different length L intervals of missing data.

Table 4 R2 results for different percentages ξ of point-wise missing data.

Table 5 R2 results for different length L intervals of missing data.

Table 6 Wilcoxon test p-values showing statistical significance of differences be-
tween RMSE results of SSC and SSO.

Table 7 Wilcoxon test p-values showing statistical significance of differences be-
tween RMSE results of SSC and PCC.

Table 8 RMSE prediction results for different percentages of point-wise missing data

Table 9 RMSE prediction results for different length intervals of missing data.
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