
Reliability Engineering and System Safety 151 (2016) 1–9
Contents lists available at ScienceDirect
Reliability Engineering and System Safety
http://d
0951-83

n Corr
E-m
journal homepage: www.elsevier.com/locate/ress
Synchronization of faulty processors in coarse-grained TMR protected
partially reconfigurable FPGA designs

U. Kretzschmar a, J. Gomez-Cornejo a, A. Astarloa a, U. Bidarte a,n, J. Del Ser b,c

a Department of Electronics, University of the Basque Country UPV/EHU, 48013 Bilbao, Bizkaia, Spain
b OPTIMA Area, TECNALIA Research & Innovation, 48160 Derio, Bizkaia, Spain
c Department of Communications Engineering, University of the Basque Country UPV/EHU, 48013 Bilbao, Bizkaia, Spain
a r t i c l e i n f o

Article history:
Received 31 August 2015
Received in revised form
27 November 2015
Accepted 23 December 2015
Available online 16 February 2016

Keywords:
Reliability
TMR
FPGA
Synchronization
Fault-recovery
Processor
x.doi.org/10.1016/j.ress.2015.12.018
20/& 2016 Elsevier Ltd. All rights reserved.

esponding author.
ail address: unai.bidarte@ehu.eus (U. Bidarte).
a b s t r a c t

The expansion of FPGA technology in numerous application fields is a fact. Single Event Effects (SEE) are a
critical factor for the reliability of FPGA based systems. For this reason, a number of researches have been
studying fault tolerance techniques to harden different elements of FPGA designs. Using Partial Recon-
figuration (PR) in conjunction with Triple Modular Redundancy (TMR) is an emerging approach in recent
publications dealing with the implementation of fault tolerant processors on SRAM-based FPGAs. While
these works pay great attention to the repair of erroneous instances by means of reconfiguration, the
essential step of synchronizing the repaired processors is insufficiently addressed. In this context, this
paper poses four different synchronization approaches for soft core processors, which balance differently
the trade-off between synchronization speed and hardware overhead. All approaches are assessed in
practice by synchronizing TMR protected PicoBlaze processors implemented on a Virtex-5 FPGA.
Nevertheless all methods are of a general nature and can be applied for different processor architectures
in a straightforward fashion.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The great flexibility, high achievable system speeds and the
large number of available design resources make SRAM-based
FPGAs a good choice for a wide variety of electronic designs.
Especially the low non-recurring engineering cost of FPGA based
designs, where the high initial expenses of ASICs or ASSPs cannot
be compensated by very high production volumes. Such designs
realized using FPGAs have been shown to outperform standard
CPUs [1–3]. Nevertheless, modern FPGA implementations typically
utilize soft- or hard-core processors to enable an efficient imple-
mentation of the overall system, as well as to take advantage of
existing hardware modules [4,5].

An additional advantage of SRAM-based FPGAs is Dynamic Partial
Reconfiguration (DPR), which allows designers to change parts of the
implemented design while keeping the overall system operational.
This time-multiplexing method of FPGA resources can be used in a
variety of ways such as e.g. adapting a cache architecture to specific
application requirements [6], implementing a multi-protocol net-
work switch or enabling software defined radio [7].
Due to the advantages that it provides, the number of fields of
application that make use of the FPGA technology continues
growing. In certain of these fields, in which a faulty operation can
jeopardize human life or the integrity of valuable technology, high
levels of reliability are required. Railway [8,9], automotive [10,11]
and space [12,13] systems are remarkable examples. In such sys-
tems robustness is one of the most relevant aspects and the high
susceptibility of SRAM-based FPGA technology to Single Event
Effects (SEE) becomes a crucial factor. SEE faults can be caused by
high energy particles impacting on the FPGA [14,15]. The most
critical among all SEEs are Single Event Upsets (SEUs) [16], specially
when they affect the configuration memory [17]. Unlike ASICs
where the interconnections and the logic elements on the die are
fixed, FPGAs use a configuration bitstream for defining the function
of the configurable logic elements or the interconnection matrix.
Configuration memory upsets can consequently alter the imple-
mented design by changing its elements. SEUs in user memories
such as FPGA internal block RAM (BRAM) and flip-flops are not as
critical for the overall system, because the SEU occurrence rate per
bit of BRAM is in the same order of magnitude as for the config-
uration memory. By contrast, a FPGA typically has one order of
magnitude more configuration memory than BRAM [18–20].

To avoid this issue, methods for mitigating the susceptibility of
FPGA designs against SEUs have been thoroughly investigated in
the literature by resorting to Error Correction Codes (ECC) [21,22]

www.sciencedirect.com/science/journal/09518320
www.elsevier.com/locate/ress
http://dx.doi.org/10.1016/j.ress.2015.12.018
http://dx.doi.org/10.1016/j.ress.2015.12.018
http://dx.doi.org/10.1016/j.ress.2015.12.018
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ress.2015.12.018&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ress.2015.12.018&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ress.2015.12.018&domain=pdf
mailto:unai.bidarte@ehu.eus
http://dx.doi.org/10.1016/j.ress.2015.12.018


input

Majority
voter

DPR 1 DPR 2 DPR 3

output

MODULE
TMR 1
3 impl.

MODULE
TMR 3
3 impl.

MODULE
TMR 2
3 impl.

Tilting

Majority
voter

Majority
voter

Fig. 1. Typical architecture of the combination of TMR and DPR.

U. Kretzschmar et al. / Reliability Engineering and System Safety 151 (2016) 1–92
or Duplication With Comparison (DWC) [23,24]. In particular, the
so-called Triple Modular Redundancy (TMR) method results to be
the most frequently addressed by both industry and academia in
diverse technological architectures [25]. The rationale for this
trend is threefold: (1) the possibility of fault masking by imple-
menting the process of voting; (2) the method of scaling the TMR
protection by changing its granularity [26]; and (3) the availability
of tools allowing for a completely automated TMR generation [27].
TMR is typically combined with configuration scrubbing [28–30], a
process which corrects configuration memory upsets. In this
combination TMR enables the design to continue operating cor-
rectly in presence of faults, whereas scrubbing avoids the accu-
mulation of multiple faults.

Although the combination of TMR and scrubbing is the fault
handling strategy recommended by the FPGA vendors [31], several
recent publications have proposed a step beyond this established
method. This new strategy is based on coarse-grained TMR where
each triplicated instance of the design is partially reconfigurable.
Any error in one of such instances can be corrected by reconfi-
guring the corresponding module [32–34]. By providing distinct
implementations of the same instance, this solution can also repair
instances where the corresponding FPGA region has suffered a
permanent error. Notwithstanding the great extent to which the
TMR setup and the partial reconfiguration aspect of this approach
have been studied in the related literature, the required synchro-
nization of the reconfigured instance has been either neglected or
it has been analyzed in an incomplete manner.

This work addresses this scarcity of investigations around
synchronization in TMR systems by proposing, implementing and
evaluating four different synchronization methodologies. The four
approaches span a broad spectrum of possible alternatives from
minimal hardware overhead to completely hardware-based syn-
chronization. This allows balancing the trade-off between imple-
mentation cost and synchronization speed, depending on the
requirements of the target application at hand. The performance of
the proposed techniques is verified and compared to each other on
the PicoBlaze [38] processor. However, all four approaches are of
general nature and can easily be migrated to other processor
architectures. These papers synchronization methods are further-
more not restricted to a set-up implementing TMR and DPR. They
are applicable to any TMR protected processor system to recup-
erate a processor element, which was forced out of sync by a SEE.

The remainder of this work is structured as follows. Section 2
surveys recent advances on fault protection using TMR and DPR.
Next, Section 3 proposes the aforementioned four different syn-
chronization approaches, whereas implementation details are
outlined in Section 4. Practical results are presented in Section 5,
and finally Section 6 ends the paper by drawing some concluding
remarks.
2. Fault tolerant systems based on DPR and TMR

The combination of Triple Modular Redundancy and Dynamic
Partial Reconfiguration is a very attractive solution for the imple-
mentation of fault tolerant systems. Among many different pos-
sible implementation forms of TMR, the so-called coarse-grained
TMR [26] implements three instances of the same module and a
final voter. This method provides a slightly lower protection than
fine-grained TMR [26,39], where modules needing protection are
broken into smaller parts. Some fine-grained TMR approaches
even provide synchronization of the three modules [40,27].
However, coarse-grained TMR is ideal for its combination with
DPR as it results in a small amount of reconfigurable partitions. A
block diagram of this combination is depicted in Fig. 1.
The above figure summarizes the high level architecture pro-
posed in a number of recent publications [32–37]. Three instances
of the same module are placed in three partially reconfigurable
areas. Configuration errors in one of these modules can conse-
quently be repaired by reloading the bitstream of the faulty
module by using partial reconfiguration once a voting step has
identified the module providing the incorrect input. This voting
step can be implemented either as a single voter or as a triplicated
voter as suggested in Fig. 1. In addition to this protection against
configuration errors, the architecture in Fig. 1 accommodates the
idea of tilting [24].

In tilting the three reconfigurable regions are enlarged to
enable different implementations of the same logic, leaving
selected parts (the white spaces marked by arrows) of the partially
reconfigurable area unused. This strategy provides a means to
avoid permanent errors: if e.g. one of the reconfigurable regions
fails to operate correctly due to a permanent error, reloading the
same partial bitstream will not recover this corresponding
instance. But if a different tilted implementation of the module is
loaded, the region can be repaired if the tilted bitstream does not
use the region with the permanent fault.

Nevertheless, in the majority of cases a reconfiguration by itself
does not suffice for recovering a faulty TMR instance. If this
instance features some kind of internal state, this state needs to be
synchronized to the other instances after the reconfiguration. In
this line of reasoning, a synchronization method valid for small
Finite State Machines (FSM) is proposed in [36] introducing the
notion of state prediction. State prediction suggests that each FSM
has (at least) one state to which the machine always returns after a
finite amount of time. Therefore, by setting the FSM of a reconfi-
gured module to this state it is possible to wait for the other two
instances to reach this point during their normal operation, and
thereafter continue seamlessly operating with all three instances.
It should be clear that this method is obviously only applicable for
small state machines with a reduced number of possible states.

Synchronization has also been considered in [35], where a fault
tolerant MicroBlaze architecture using TMR and DPR was pre-
sented, as summarized in Fig. 2.

In this work three MicroBlaze processors sharing peripherals and
memory were implemented in partially reconfigurable areas. The
peripherals and the shared memory are protected by TMR and ECC,
respectively. Sharing one memory between the three processors



Fig. 2. Architecture combining TMR and DPR with shared memory (simplified from
[35]).

U. Kretzschmar et al. / Reliability Engineering and System Safety 151 (2016) 1–9 3
reduces synchronization to a process of reading and writing to the
memory: whenever the processors write data to the memory a
voting process is started, which will mask wrong data from the
newly reconfigured instance, and store the correct values sent from
the two remaining functional instances. In a subsequent read cycle
the three processors can read the synchronized value back to their
memories.

While this synchronization approach is suitable for MicroBlaze
processors, it is not applicable to all processor architectures. For
the MicroBlaze processor it is possible to access all registers of
relevance for the synchronization process, such as e.g. the stack
pointer, the status register and the program counter. In this
manner a synchronization by reading and writing to the shared
memory becomes feasible. On the contrary, many other popular
processor architectures (e.g. PicoBlaze or PIC) do not provide
reading access to all registers representing the state of the CPU.

Another related contribution is the work in [24], where the
synchronization between two MicroBlaze processors operating in
Double Modular Redundancy (DMR) is addressed. After one of
such processors is partially reconfigured, a similar technique to
state prediction is used. After identifying the faulty processor, the
so-called roll-forward procedure is executed to set the processor to
a state the other MicroBlaze will reach in the future. Since the state
is assumed to only consist of the program counter, a synchroni-
zation similar to the one in [35] is required after the roll-forward
to update the register contents. This leaves this method subject to
the same drawbacks as those previously identified for the shared
memory approach in [35].

The well known approach of checkpointing and rollback as used
for the synchronization of duplicated processors in the so-called
Lockstep technology [24,23,41] is only mentioned here for com-
pleteness sake, as it does not translate well to the fault protection
method represented in Fig. 1. In a system using DPR and TMR the
periodic checkpointing (copying of the processors state) is unne-
cessary because in case of a fault in a single processor the correct
system state can still be obtained by comparing all three processor
instances (voting).
copy
time

t
SEU SEU

detection
sync
start

sync
end

normal
operation

time to
detection

wait for
sync

normal
operation

time for error
reparation (DPR)

recover
SEU by DPR

synchronization approach dependent

total fault recovery time

Fig. 3. SEU recovery process and impact of synchronization times.
3. Proposed synchronization approaches

When implementing a combination of Triple Modular Redun-
dancy and Dynamic Partial Reconfiguration for the realization of
fault tolerant systems, a pure reconfiguration of a faulty module is
not sufficient given that the reconfigured module comprises of an
internal state. This synchronization is especially critical for pro-
cessors, because their state is composed of a number of different
registers. For a typical processor the following parts need to be
synchronized: the program counter, the stack-content, the stack-
pointer, the flag-status, the processor registers and the internal
memory, which is provided by some processors such as the Pico-
Blaze. These elements will be referred to as synchronization objects
in the remainder of this work. The synchronization of caches will
not be evaluated in the following approaches, but a synchroniza-
tion strategy for caches can be as easy as clearing their contents in
all processors, in case of a write-through strategy.

In general finding an adequate synchronization strategy for a
given application implies balancing a trade-off. On the one hand,
adding specialized hardware for the processor synchronization
will enable a very fast synchronization process. On the other hand,
implementing the synchronization with little extra hardware
combined with software will result in less implementation over-
head and a lower impact on the critical path of the design.

The structure of the synchronization method impacts the
duration of two sub-steps of the whole SEU recovery process.
Firstly the time required to copy the correct values of the different
synchronization elements to a recently reconfigured processor
instance in the coarse-grain TMR setup. This time will be called
copy-time. The second aspect of the synchronization speed is the
time from the detection of an error by the voter until the point in
time where the system is ready to start the synchronization pro-
cess. This second time is named wait-for-sync. Some approaches
cannot begin directly with the synchronization, but they first need
to finish ongoing calculations before CPU time can be spent for
updating a reconfigured processor instance in the system. The
time from the detection of an error to the re-synchronization has
implications on the overall system robustness, because in this time
period the TMR system operates only with two functional
instances, making it vulnerable to consecutive SEUs.

The whole SEU recovery process is illustrated in Fig. 3, where
the time requirement is defined by the sum of four components:
the time needed to detect the error, the wait-for-sync time, the
time consumed for repairing the SEU by partial reconfiguration
and the copy-time. Whereas the time for partial reconfiguration is
proportional to the size of the reconfigured partition and the
reconfiguration speed, the time to detection is not affected by the
synchronization approach, but only application dependent and
hence is considered beyond the scope of this paper.

In the following, different synchronization approaches are
presented for the example of the PicoBlaze processor. The syn-
chronization objects of this specific architecture are summarized
in Table 1. This table also contains the synchronization objects of
the MicroBlaze processor, a more powerful and complex processor
architecture. Despite the simpler architecture of the PicoBlaze, it is
more demanding in terms of synchronization. For the MicroBlaze
all synchronization objects are accessible via software, however
the PicoBlaze has an inherent need for additional hardware when
a complete synchronization is desired because the stack, the flags
and the program counter are neither readable nor writable by
software.

It needs to be noticed that this work does not consider the
instruction memory as a synchronization object, because it is
external to the processor. In many cases it is outside of the FPGA or
designers might consider other protection methods, such as ECC as
done in [35].



Table 1
General synchronization objects and accessability for the PicoBlaze and MicroBlaze
processors.

General synchronization object PicoBlaze MicroBlaze

ALU-flags No access Readable/writable
Stack-pointer No access Readable/writable
Stack-content No access Readable/writable
Program counter No access Readable/writable
CPU registers Readable/writable Readable/writable
Internal memory Readable/writable –

PBPB PB

Voter

rst rst rst

Fig. 4. Synchronization approach 1: cyclic resets.

PBPB PB

Voter

Sync
Mem

Voter

Fig. 5. Synchronization approach 2: synchronization memory.

U. Kretzschmar et al. / Reliability Engineering and System Safety 151 (2016) 1–94
3.1. Approach 1: cyclic resets

The first approach proposed in this work is to synchronize the
three PicoBlaze processors by applying a cyclic reset as indicated
in Fig. 4.

This reset allows bringing all TMR instances of the PicoBlaze
back to a known state and restarting the program execution from
the scratch with all three PicoBlazes in parallel. No changes in the
actual PicoBlaze implementation are required. In this approach the
BRAM memory on Xilinx devices is not cleared by a reset. The
software on the PicoBlaze processors consequently needs to
initialize all registers or scratchpad locations before the first usage.

There are different possibilities for triggering the synchroni-
zation reset:

� The PicoBlazes set a flag in a shared memory upon termination
of their calculations. When at least two instances have set the
flag, a reset may be issued.

� A timer is programmed to the worst-case runtime of the given
software and is started together with the PicoBlazes. The
expiring timer will trigger a reset.

� The instruction bus addresses of the PicoBlazes are supervised
to detect the end of the program.

� Very simple applications, where it is admissible to lose one
packet, may trigger the reset directly upon detection of a SEU.

Details on the software requirements of this approach are
evaluated in Section 4. For the first three possible trigger methods
in Appr. 1, the worst-case of the synchronization time wait-for-sync
is one complete algorithm runtime. The copy-time does not exist
because no values are copied.
3.2. Approach 2: synchronization memory and address force

Appr. 1 implies a high number of restrictions to the software run-
ning on the hardware. One important restriction is that it is not pos-
sible to leave permanent data in the processor registers or in its
internal memory, in case of the PicoBlaze the scratchpad memory.
Although this memory is not affected by the resets, it cannot be
assumed to be error-free, because it is not synchronized by any means.

This drawback is addressed in Appr. 2 (Fig. 5), which builds
upon and enhances a synchronization idea presented in [35] based
on a shared memory. Adding a TMR-protected shared memory to
the system allows a synchronization of the processors by con-
current writing to this memory, followed by a concurrent reading
of the data. The actual synchronization of the data is executed
when all PicoBlazes write concurrently to the TMR memory, where
the voters on the input of the TMR memory are able to mask an
incorrect input from one processor. The method proposed herein
utilizes a synchronization memory of only one byte (i.e. the
datawidth of the PicoBlaze) yielding in a minimal hardware
overhead.

The synchronization process is triggered by externally forcing a
JUMP instruction to all three PicoBlaze instances. The destination of
this JUMP is the synchronization software sequence, which is exe-
cuted by all PicoBlazes simultaneously. At the same time the pro-
gram counters of the processors are synchronized using this simple
method. In the synchronization sequence all PicoBlaze memory
locations requiring synchronization are first written to and then
read from the synchronization memory. It needs to be ensured that
the synchronization is only triggered when the processors are not
serving any interrupt. Details on the software requirements
accompanying this approach are provided in Section 4.

The rationale behind forcing a JUMP to execute the synchro-
nization code as opposed to using an Interrupt Service Routine
(ISR) is that Appr. 2 follows a “black box” approach, which does not
require changes in the implementation of the used processor.
Using an ISR for synchronization would require a synchronization
of the processor stack, which would imply changes to be made to
the HDL of the PicoBlaze.

The synchronization time wait-for-sync in Appr. 2 has a worst-
case of the complete algorithm runtime, whereas the copy-time
equals the best case of four cycles per each byte of synchronized
data (one read- and one write-instruction, which respectively take
two cycles).

3.3. Approach 3: synchronization interrupt with synchronization
memory

The third synchronization approach uses a synchronization
memory and synchronization software residing in an ISR.

Under this approach the processors do not need to wait for the
current calculation to finish, but it is possible to almost directly
react on a detected SEU by assigning the synchronization inter-
rupt. Along with this improvement comes the need for modifica-
tions in the PicoBlaze implementation. When using an ISR for
synchronization it is essential to synchronize the processor stack
in order to synchronize the return addresses of all processors,



Table 2
Synchronization method overview.

Synchronization object Appr. 1 Appr. 2 Appr. 3 Appr. 4

ALU-flags – – HW HW
Stack-pointer – – HW HW
Stack-content – – HW HW
CPU registers – SW SW HW
Scratchpad memory – SW SW HW
Program counter Reset Forced JUMP On ISR return On ISR return

U. Kretzschmar et al. / Reliability Engineering and System Safety 151 (2016) 1–9 5
because before entering the ISR the program counter of the
reconfigured processor will have a different value than the
other two.

In Fig. 6 the Sync Control block represents the logic added to the
overall system for the synchronization of the stack-pointer, the
stack-address and the shadow registers of the ALU-flags. As these
registers are not software accessible, it is not possible to imple-
ment Appr. 3 in the same “black box” fashion as Appr. 1 & 2.

The advantages of this synchronization approach become visi-
ble when focusing on the wait-for-sync synchronization time. This
is reduced to be only a few cycles long, namely the time needed for
triggering the interrupt. The copy-time remains the same as in
Appr. 2, since the software for the copying is identical.

3.4. Approach 4: complete hardware-based synchronization

The last proposed approach is a completely hardware based
synchronization method, which is illustrated in Fig. 7. The Sync
Control module is expanded to also control the synchronization of
the registers and the scratchpad memory without requiring any
specific synchronization software. Fig. 7 depicts this approach
with the largest hardware overhead.

When the hardware based synchronization is executed it needs
to be ensured that no software is accessing the registers or the
scratchpad memory simultaneously to avoid errors. As almost all
PicoBlaze instructions use registers in their operations, this work
proposes to stall the processor while the hardware based syn-
chronization of Appr. 4 takes place. An easy implementation of this
stalling can be achieved by externally forcing all PicoBlaze
instruction addresses to the last memory position, namely 0x3ff.
This address is the interrupt entrance point and thus always
contains an unconditional JUMP instruction to the ISR.
PBPB PB

Voter

int int int

int

Sync
Mem

Voter

Sync
Control

Fig. 6. Synchronization approach 3: synchronization memory þ interrupt.

PBPB PB

Voter

int int int

int

Sync
Control

Fig. 7. Synchronization approach 4: hardware based synchronization.
A tailored optimization of the stall time can be achieved in a
variety of ways. If e.g. the usage of the scratchpad memory in the
first part of the ISR is forbidden, the stalling can be as short as 16
cycles (the register synchronization time). The stalling can also be
shortened, when only a subset of scratchpad locations require
synchronization.

Appr. 4 has the same short wait-for-sync time as Appr. 3, but it
has a significantly reduced synchronization time for the registers
and scratchpad (copy-time). Whereas software based synchroni-
zation takes 4 cycles per memory cell, hardware based synchro-
nization needs only one cycle. An additional benefit of hardware
synchronization is that the copying of registers and scratchpad
memory can be executed in parallel.

An overview of all the four proposed approaches is given in
Table 2. It summarizes the synchronization strategy for all syn-
chronization elements of the PicoBlaze processor. The entry SW
represents the synchronization via the synchronization memory,
HW represents a modification to the processor and a dash indi-
cates that the element is not synchronized. The synchronization
methods for the program counter manifest the biggest differences.
Whereas Appr. 1 relies on resetting this register, Appr. 2 works by
forcing a JUMP instruction to update this value. On the contrary
Appr. 3 & 4 do only synchronize the stack while being in the ISR
and the program counter is updated upon returning from the
interrupt.
4. Implementation details

4.1. Software restrictions for approaches 1 & 2

When working with approaches which do not synchronize the
device in its entirety (Appr. 1 & 2), this fact needs to be considered
for the software running on the processors. On this purpose two
different software flows are hereafter outlined enabling the utili-
zation of Appr. 1 and Appr. 2.

The flow in Fig. 8(a) schedules a reconfiguration after each
iteration of the algorithm implemented on the processor. After the
software finishes its execution a waiting state is entered (e.g. an
endless loop). After it has been detected that at least two pro-
cessors reached this waiting state or after the expiration of a
synchronization timer a resynchronization is triggered. This is
executed independently of whether a fault occurred or not, in
order to leave the waiting state and prepare the following iteration
of the algorithm.

A software flow triggering reconfigurations only if necessary is
presented in Fig. 8(b). After finishing one calculation iteration the
processors read the TMR-protected information of the system
voter if a resynchronization is required. If this is the case, then the
software flow proceeds to a waiting state as in Fig. 8(a) and waits
for synchronization by reset or by a forced JUMP. If on the other
hand no synchronization is required, the processors may directly
continue with the next calculation.



Fig. 8. Required program style when using Appr. 1 or Appr. 2.

Fig. 9. Implementation of stack-data and flag synchronization (elements with grey background are original Picoblaze design, the muxes and the lightgrey signals have been
added).

Table 3
Cycles requirements for synchronization.

Synchronization object Appr. 1 Appr. 2 Appr. 3 Appr. 4

Reg. ALU-flags – – 1 1
Stack-pointer – – 1 1

BRAM Stack-content – – 32 32
CPU registers – 64a 64 16
Internal memory – 512b 512 64

Total – 576 576 64c

a 16 registers, 2 instructions per register, 2 cycles per instruction.
b 64 locations, 4 instructions per location, 2 cycles per instruction.
c For HW-based synchronization the overall synchronization time is deter-

mined by the highest BRAM synchronization time.

U. Kretzschmar et al. / Reliability Engineering and System Safety 151 (2016) 1–96
4.2. Implementation of the hardware synchronization interface

Both approaches 3 and 4 require modifications on the imple-
mented PicoBlaze processor. Fig. 9 illustrates the implementation
of this hardware synchronization interface on the example of the
stack-data and the shadow flag registers.

The PicoBlaze elements requiring synchronization are divided
into two groups:

� First the shadow registers for the flags and the stack pointer,
which are elements are implemented as registers on the FPGA.
To synchronize these, multiplexers are added for each of these
registers, allowing a synchronization time of one-cycle.

� Secondly the processor registers, the stack-data and the scratch-
pad memory, which are all implemented using block ram
(BRAM). Multiplexers and a synchronization counter are imple-
mented for each element enabling the synchronization of one
memory element in one cycle.

The synchronization approaches for the different PicoBlaze
state elements result in the synchronization times (copy-times)
given in Table 3.

It can be observed that hardware based synchronization (Appr.
4) results in the fastest synchronization. Table 3 reveals further-
more that the scratchpad memory has the biggest impact on the
synchronization times. As a consequence big synchronization
speed-ups can be achieved when the application allows synchro-
nizing only a subset of the scratchpad memory locations.
4.3. Test procedure

Partial reconfiguration techniques enable a very straightfor-
ward testing method of the proposed synchronization approaches.
This test approach is summarized in Fig. 10.

In addition to one functional bitstream for each partition con-
taining a PicoBlaze processor, some corrupted bitstreams are
prepared to force certain processor elements out of sync. In Fig. 10
this is showcased for the processor instance PB0.

A synchronization test is executed as follows:

1. Configure the complete device
2. Emulate a failure by loading a bad partial bitstream
3. Repair the failure by loading good partial bitstream



PB1 PB2

Voter

PB0
good

PB0
bad PC

PB0
bad Reg

PB0
bad ...

CHIPSCOPE

PB2

PB0
PB1

recon-
figurable
partion

Fig. 10. Test procedure for the synchronization validation.

U. Kretzschmar et al. / Reliability Engineering and System Safety 151 (2016) 1–9 7
4. Trigger synchronization routine
5. Check correct synchronization using ChipScope

The use of ChipScope [42] permits to validate the synchroni-
zation process on the actual FPGA by monitoring the external
processor signals such as the instruction address for observation of
the program counter and also internal signals like the stack
pointer for validation of Appr. 3 & 4. In this work problems with
the trigger settings were encountered when using ChipScope for
both partial reconfiguration and logic analyzer. To circumvent
these issues the synchronizationwas triggered manually instead of
invoking this step automatically after a partial reconfiguration.

As opposed to a complete fault injection (as executed for the
PicoBlaze in [43]) the simplified injection method of altered partial
bitstreams proposed in this work focuses mainly on the correct
synchronization of all synchronization objects presented in Table 1,
rather than determining the robustness of the complete setup.
5. Implementation and test results

All four proposed synchronization methods were implemented
on a Xilinx Virtex-5 FPGA to validate their correct operation. Fault
injection tests were executed as defined in the previous section.

All the functional behaviour was validated and a selection of
these test results is displayed in Fig. 11, visualizing the final syn-
chronization step of the tests. The figure contains synchronization
details for Appr. 2, 3 and 4 in Fig. 11(a)–(c). Within the first seven
signals a uniform structure was established for all waveforms. The
first three waves contain the instruction addresses (representing
the PC) of the three PicoBlazes. In the next three waveforms the
value, which was forced out of sync in the test. Finally in the
seventh line the synchronized data is displayed, which is written
back to PicoBlaze number 0 (which in the tests is always the faulty
instance). A visualization of the voting was added in form of an
arrow starting from a dashed ellipse containing the values of all
three PicoBlazes.

Fig. 11 (a) gives an insight into the synchronization of 4 bytes of
scratchpad memory and the PC using Appr. 2. This figure's second
ellipse marks the different values the PicoBlazes send to the syn-
chronization memory and the arrow marks the voted result, which
afterwards is read by all PicoBlazes in the next cycle. The software
assembler commands implementing the software based synchro-
nization are given in the tilted boxes. The stack content synchro-
nization, which allows indirectly correcting the program counter
while an ISR is processed is illustrated in Fig. 11(b). This hardware
based stack synchronization is used in Appr. 3 & 4. Finally the last
example of Fig. 11(c) contains the completely hardware based
register synchronization used in Appr. 4. Issuing an interrupt is
necessary in Appr. 4 although no synchronization software is
required. However, the processor needs to enter this state because
the processors require to be stalled for register synchronization.
The program counter synchronization happens indirectly by the
synchronization of the stack.

Comparing Fig. 11(a) and (c) drastic differences in terms of
synchronization speed between software based- and hardware
based approaches arise. The four instructions used for synchro-
nizing one byte of scratchpad RAM require eight clock cycles. By
contrast Fig. 11(c) illustrates the fact that the hardware based
copying of BRAM content, such as registers, scratchpad RAM and
stack content, requires one clock cycle per byte. In addition to that
the hardware synchronization for all different BRAM based ele-
ments – e.g. registers and scratchpad – can be performed in
parallel.

The drawbacks of hardware based synchronization are unveiled
in Table 4, where the FPGA resource requirements of the different
implementations are summarized as absolute values and in rela-
tion to Appr. 1. Correspondingly Appr. 4 uses 1.81 times the LUTs
resources compared to Appr. 1 and the possible operation fre-
quency is reduced to 46%.

The increase in resource requirements is significant, especially
if a high degree of hardware synchronization is supported. When
implementing a processor as small as the PicoBlaze, adding
modules such as the sync memory or the sync FSM has a stronger
relative weight as compared to bigger processors. The VHDL
source code of the PicoBlaze provided by Xilinx has been opti-
mized by hand implementing FPGA resources (such as LUT, BRAM,
MUXes) directly to fit perfectly the FPGA architecture. When
augmenting this hand-optimized design by synchronization logic,
the optimization level is deteriorated.

Besides the additional FPGA resource requirements, Appr. 3 and
4 undergo a significant impact on the system frequency. This is
also a consequence of the hand-optimized VHDL description,
which does not allow the synthesis tool to optimize the design
efficiently after the synchronization logic is added. But for Appr.
4 a certain system frequency drop cannot be avoided, because
adding a MUX to the processor registers extends the critical path
of the processor.

Based on the trade off between the three factors of the syn-
chronization approaches (the FPGA resource overhead, the syn-
chronization speed and the elements which support synchroni-
zation) different applications might benefit from different syn-
chronization techniques. A simple algorithm, such as the Advanced
Encryption Standard (AES), does not require a very elaborate
synchronization. If the key does not need to be stored, a cyclic
reset (Appr. 1) might be a sufficient solution. If only a small amount
of data needs to be kept on the processor (for example in cyclic
sensor readouts) Appr. 2 is a suitable option. The last readouts can
be kept in the scratchpad memory and the rest of the system can
be forced to a sync whenever this is required. Both approaches
3 and 4 represent almost no restrictions to the device software and
only minor considerations need to be taken into account for the
development of the ISR. Hence almost all applications are candi-
dates to be synchronized using Appr. 3 or Appr. 4. In very high
radiation environments the faster synchronization time (copy-
time) of Appr. 4 might favour this method despite of its higher
resource requirements.
6. Conclusions and future works

In this work the need for synchronization techniques has been
underlined when using TMR and partial reconfiguration for
building reliable systems. Four different synchronization approa-
ches have been defined so as to cover a wide spectrum of



Table 4
Resource consumption on Xilinx XC5VFX70T (without Chipscope, without partial
reconfigurable areas).

Resource Appr. 1 Appr. 2 Appr. 3 Appr. 4

LUT 372 (100%) 470 (126%) 579 (156%) 672 (181%)
Reg 204 (100%) 215 (105%) 251 (123%) 240 (118%)
BRAM 3 (100%) 3 (100%) 3 (100%) 3 (100%)
fmax 226 (100%) 211 (93%) 142 (63%) 104 (46%)

Fig. 11. Screenshots of ongoing synchronizations: (a) shows the synchronization of 4 byte scratchpad memory using Appr. 2, (b) shows the stack data synchronization from
Appr. 3 and (c) shows the register synchronization using Appr. 4.

U. Kretzschmar et al. / Reliability Engineering and System Safety 151 (2016) 1–98
synchronization complexity levels. These approaches are, in order
of increasing complexity: a minimal hardware approach (Appr. 1),
a software based memory synchronization (Appr. 2), a complete
synchronization using a mix of hardware and software (Appr. 3)
and a completely hardware based approach (Appr. 4). The correct
operation of all suggested methods has been proven in actual
FPGA implementations and the advantages and disadvantages
have been thoroughly discussed. Different application scenarios
have been suggested depending on the implementation and syn-
chronization features of the proposed approaches.

Future efforts will focus on the application of the synchroni-
zation methods in different contexts. Both the synchronization of
other processors using these methods and the execution of a
complete fault injection campaign on a system of coarse-grained
TMR with DPR will be pursued as particularly promising research
lines derived from this work.
Acknowledgements

This work has been supported by the Ministerio de Economa y
Competitividad of Spain within the project TEC2014-53785-R and
it has been carried out inside de Research and Education Unit
UFI11/16 of the UPV/EHU and partially supported by the Basque
Government within the fund for research groups of the Basque
university system IT394-10. Also, FEDER funds are acknowledged.



U. Kretzschmar et al. / Reliability Engineering and System Safety 151 (2016) 1–9 9
References

[1] Stitt G, George A, Lam H, Reardon C, Smith M, Holland B, et al. An end-to-end
tool flow for FPGA-accelerated scientific computing. Des Test Comput 2011;28
(4):68–77. http://dx.doi.org/10.1109/MDT.2011.46.

[2] Kumar Jaiswal M, Chandrachoodan N. FPGA-based high performance and
scalable block lu decomposition architecture. IEEE Trans Comput 2012;61
(1):60–72. http://dx.doi.org/10.1109/TC.2011.24.

[3] Fife W, Archibald J. Improved census transforms for resource-optimized stereo
vision. IEEE Trans Circuits Syst Video Technol 2013;23(1):60–73.

[4] Xilinx Corp., EDK concepts, tools and techniques. Xilinx documentation,
UG683; April 2012. 〈http://www.xilinx.com〉.

[5] Stevens D, Chouliaras V, Azorin-Peris V, Zheng J, Echiadis A, Hu S. BioThreads:
a novel vliw-based chip multiprocessor for accelerating biomedical image
processing applications. IEEE Trans Biomed Circuits Syst 2012;6(3):257–68.
http://dx.doi.org/10.1109/TBCAS.2011.2166962.

[6] Gil AS, Latorre FQ, Calvino MH, Gomez EH, Benitez JB. Optimizing the physical
implementation of a reconfigurable cache. In: International conference on
reconfigurable computing and FPGAs (ReConFig); 2012. p. 1–6. http://dx.doi.
org/10.1109/ReConFig.2012.6416768.

[7] Iturbe X, Benkrid K, Hong C, Ebrahim A, Torrego R, Martinez I, et al. R3TOS: a
novel reliable reconfigurable real-time operating system for highly adaptive,
efficient, and dependable computing on FPGAs. IEEE Trans Comput 2013;62
(8):1542–56. http://dx.doi.org/10.1109/TC.2013.79.

[8] Bernardi S, Flammini F, Marrone S, Mazzocca N, Merseguer J, Nardone R, et al.
Enabling the usage of UML in the verification of railway systems: the dam-rail
approach. Reliab Eng Syst Saf 2013;120:112–26. http://dx.doi.org/10.1016/j.
ress.2013.06.032.

[9] Brizuela J, Ibañez A, Fritsch C. NDE system for railway wheel inspection in a
standard FPGA. J Syst Archit 2010;56(11):616–22. http://dx.doi.org/10.1016/j.
sysarc.2010.07.015.

[10] Guilbert D, Guarisco M, Gaillard A, N’Diaye A, Djerdir A. FPGA based
fault-tolerant control on an interleaved DC\DC boost converter for fuel cell
electric vehicle applications. Int J Hydrogen Energy 2015;40(45):15815–22.
http://dx.doi.org/10.1016/j.ijhydene.2015.03.124.

[11] T. Hoppe, S. Kiltz, J. Dittmann, Security threats to automotive CAN networks –
practical examples and selected short-term countermeasures. In: Lecture
notes in computer science (including subseries lecture notes in artificial
intelligence and lecture notes in bioinformatics), Lecture notes in computer
sciences, vol. 5219; 2008. p. 235–48. Cited by 6. http://dx.doi.org/10.1007/978-
3-540-87698-4.

[12] Prieto-Alfonso H, Del Peral L, Casolino M, Tsuno K, Ebisuzaki T, Rodrguez Fras
M. Radiation hardness assurance for the jem-euso space mission. Reliab Eng
Syst Saf 2014;133:137–45. http://dx.doi.org/10.1016/j.ress.2014.08.014.

[13] Park D, Yeom K, Ahn S, Lim H. Validation of an active transponder for
KOMPSAT-5 SAR image calibration. Adv Space Res 2014;54(8):1552–62. http:
//dx.doi.org/10.1016/j.asr.2014.06.016.

[14] Xilinx Corp., Considerations surrounding single event effects in FPGAs, and
processors. Xilinx documentation, WP402; March 2012. 〈http://www.xilinx.
com〉.

[15] Entrena L, Garcia-Valderas M, Fernandez-Cardenal R, Lindoso A, Portela M,
Lopez-Ongil C. Soft error sensitivity evaluation of microprocessors by multi-
level emulation-based fault injection. IEEE Trans Comput 2012;61(3):313–22.
http://dx.doi.org/10.1109/TC.2010.262.

[16] Weulersse C, Miller F, Carrire T, Mangeret R. Prediction of proton cross sections
for SEU in SRAMS and SDRAMS using the METIS engineer tool. Microelectron
Reliab 2015;910:1491–5. http://dx.doi.org/10.1016/j.microrel.2015.06.117.

[17] Quinn H, Graham P, Wirthlin M, Pratt B, Morgan K, Caffrey M, et al. Metho-
dology for determining space readiness of Xilinx SRAM-based FPGA devices
and designs. IEEE Trans Instrum Meas 2009;58(10):3380–95. http://dx.doi.
org/10.1109/TIM.2009.2025469.

[18] Xilinx Corp., Device reliability report, fourth quarter 2010. Xilinx doc-
umentation, UG116; February 2011. 〈http://www.xilinx.com〉.

[19] Xilinx Corp., Xilinx-5 FPGA configuration user guide. Xilinx documentation,
UG191; August 2010. 〈http://www.xilinx.com〉.

[20] Xilinx Corp., Virtex-5 family overview. Xilinx documentation, DS100; February
2009. 〈http://www.xilinx.com〉.

[21] Liu S, Sorrenti G, Reviriego P, Casini F, Maestro J, Alderighi M, et al. Com-
parison of the susceptibility to soft errors of SRAM-based FPGA error correc-
tion codes implementations. IEEE Trans Nucl Sci 2012;59(3):619–24.

[22] Jacobs A, Cieslewski G, George A. Overhead and reliability analysis of
algorithm-based fault tolerance in FPGA systems. In: 22nd International
conference on field programmable logic and applications (FPL); 2012. p. 300–
6. http://dx.doi.org/10.1109/FPL.2012.6339222.
[23] Violante M, Meinhardt C, Reis R, Reorda M. A low-cost solution for deploying
processor cores in harsh environments. IEEE Trans Ind Electron 2011;58
(7):2617–26. http://dx.doi.org/10.1109/TIE.2011.2134054.

[24] Pham H, Pillement S, Piestrak S. Low overhead fault-tolerance technique for
dynamically reconfigurable softcore processor. IEEE Trans Comput 2013;62
(6):1179–92.

[25] Fort A, Mugnaini M, Vignoli V, Gaggii V, Pieralli M. Fault tolerant design of a
field data modular readout architecture for railway applications. Reliab Eng
Syst Saf 2015:456–62. http://dx.doi.org/10.1016/j.ress.2015.06.008.

[26] Kretzschmar U, Astarloa A, Lazaro J, Garay M. del Ser J. Robustness of different
TMR granularities in shared wishbone architectures on SRAM FPGA. In:
International conference on reconfigurable computing and FPGAs (ReConFig);
2012.

[27] Xilinx Corp., Xilinx TMRTool user guide. Xilinx documentation; September
2009. 〈http://www.xilinx.com〉.

[28] Berg M, Poivey C, Petrick D, Espinosa D, Lesea A, LaBel K, et al. Effectiveness of
internal versus external seu scrubbing mitigation strategies in a Xilinx FPGA:
design, test, and analysis. IEEE Trans Nucl Sci 2008;55(4):2259–66. http://dx.
doi.org/10.1109/TNS.2008.2001422.

[29] Herrera-Alzu I, Lopez-Vallejo M. Design techniques for Xilinx Virtex FPGA
configuration memory scrubbers. IEEE Trans Nucl Sci 2013;60(1):376–85.

[30] Nazar G. Improving FPGA repair under real-time constraints. Microelectron
Reliab 2015;55(7):1109–19. http://dx.doi.org/10.1016/j.microrel.2015.04.003.

[31] Carmichael C, Bridgford B, Tseng Chen Wei. Single-event upset mitigation
selection guide. Xilinx documentation, XAPP987; March 2008. 〈http://www.
xilinx.com〉.

[32] Paulsson K, Hubner M, Jung M, Becker J. Methods for run-time failure recog-
nition and recovery in dynamic and partial reconfigurable systems based on
Xilinx Virtex-II Pro FPGAs. In: IEEE Computer society annual symposium on
emerging VLSI technologies and architectures; 2006. p. 6. http://dx.doi.org/10.
1109/ISVLSI.2006.62.

[33] Bolchini C, Miele A, Santambrogio M. TMR and partial dynamic reconfigura-
tion to mitigate SEU faults in FPGAs. In: 22nd IEEE International symposium
on defect and fault-tolerance in VLSI systems, DFT; 2007. p. 87–95. http://dx.
doi.org/10.1109/DFT.2007.25.

[34] Iturbe X, Azkarate M, Martinez I, Perez J, Astarloa A. A novel SEU, MBU and
SHE handling strategy for Xilinx Virtex-4 FPGAs. In: International conference
on field programmable logic and applications (FPL); 2009. p. 569–73. http://
dx.doi.org/10.1109/FPL.2009.5272410.

[35] Ichinomiya Y, Tanoue S, Amagasaki M, Iida M, Kuga M, Sueyoshi, T. Improving
the robustness of a softcore processor against SEUs by using TMR and partial
reconfiguration. In: 18th IEEE Annual international symposium on field-
programmable custom computing machines (FCCM); 2010. p. 47–54. http://
dx.doi.org/10.1109/FCCM.2010.16.

[36] Azambuja J, Sousa F, Rosa L, Kastensmidt F. Evaluating large grain TMR and
selective partial reconfiguration for soft error mitigation in SRAM-based
FPGAs. In: 15th IEEE international on-line testing symposium, IOLTS; 2009.
p. 101–6. http://dx.doi.org/10.1109/IOLTS.2009.5195990.

[37] Straka M, Kastil J, Kotasek Z. Modern fault tolerant architectures based on
partial dynamic reconfiguration in FPGAs. In: IEEE 13th international sym-
posium on design and diagnostics of electronic circuits and systems (DDECS);
2010. p. 173–6.

[38] Chapman K. PicoBlaze 8-bit microcontroller for Virtex-E and Spartan II/IIE-
Devices, Xilinx documentation, XAPP216; February 2003. 〈http://www.xilinx.
com〉.

[39] Wang X. Partitioning triple modular redundancy for single event upset miti-
gation in FPGA. In: International conference on e-product e-service and e-
entertainment (ICEEE); 2010. p. 1–4. http://dx.doi.org/10.1109/ICEEE.2010.
5660842.

[40] Johnson JM, Wirthlin MJ. Voter insertion algorithms for FPGA designs using
triple modular redundancy. In: Proceedings of the 18th annual ACM/SIGDA
international symposium on field programmable gate arrays. New York, NY,
USA: ACM; 2010. p. 249–58.

[41] Harn Hua Ng. PPC405 Lockstep system on ML310. Xilinx documentation,
XAPP564; January 2007. 〈http://www.xilinx.com〉.

[42] Xilinx Corp., ChipScope Pro 12.1 software and cores. Xilinx documentation,
UG029; April 2010. 〈http://www.xilinx.com〉.

[43] Kretzschmar U, Astarloa A, Lazaro J, Jimenez J, Zuloaga A. An automatic
experimental set-up for robustness analysis of designs implemented on SRAM
FPGAs. In: International symposium on system on chip (SoC); 2011. p. 96–101.
http://dx.doi.org/10.1109/ISSOC.2011.6089684.

http://dx.doi.org/10.1109/MDT.2011.46
http://dx.doi.org/10.1109/MDT.2011.46
http://dx.doi.org/10.1109/MDT.2011.46
http://dx.doi.org/10.1109/TC.2011.24
http://dx.doi.org/10.1109/TC.2011.24
http://dx.doi.org/10.1109/TC.2011.24
http://refhub.elsevier.com/S0951-8320(15)00370-1/sbref3
http://refhub.elsevier.com/S0951-8320(15)00370-1/sbref3
http://refhub.elsevier.com/S0951-8320(15)00370-1/sbref3
http://www.xilinx.com
http://dx.doi.org/10.1109/TBCAS.2011.2166962
http://dx.doi.org/10.1109/TBCAS.2011.2166962
http://dx.doi.org/10.1109/TBCAS.2011.2166962
http://dx.doi.org/10.1109/ReConFig.2012.6416768
http://dx.doi.org/10.1109/ReConFig.2012.6416768
http://dx.doi.org/10.1109/TC.2013.79
http://dx.doi.org/10.1109/TC.2013.79
http://dx.doi.org/10.1109/TC.2013.79
http://dx.doi.org/10.1016/j.ress.2013.06.032
http://dx.doi.org/10.1016/j.ress.2013.06.032
http://dx.doi.org/10.1016/j.ress.2013.06.032
http://dx.doi.org/10.1016/j.ress.2013.06.032
http://dx.doi.org/10.1016/j.sysarc.2010.07.015
http://dx.doi.org/10.1016/j.sysarc.2010.07.015
http://dx.doi.org/10.1016/j.sysarc.2010.07.015
http://dx.doi.org/10.1016/j.sysarc.2010.07.015
dx.doi.org/10.1016/j.ijhydene.2015.03.124
dx.doi.org/10.1016/j.ijhydene.2015.03.124
dx.doi.org/10.1016/j.ijhydene.2015.03.124
http://dx.doi.org/10.1007/978-3-540-87698-4
http://dx.doi.org/10.1007/978-3-540-87698-4
http://dx.doi.org/10.1016/j.ress.2014.08.014
http://dx.doi.org/10.1016/j.ress.2014.08.014
http://dx.doi.org/10.1016/j.ress.2014.08.014
http://dx.doi.org/10.1016/j.asr.2014.06.016
http://dx.doi.org/10.1016/j.asr.2014.06.016
http://dx.doi.org/10.1016/j.asr.2014.06.016
http://dx.doi.org/10.1016/j.asr.2014.06.016
http://www.xilinx.com
http://www.xilinx.com
http://dx.doi.org/10.1109/TC.2010.262
http://dx.doi.org/10.1109/TC.2010.262
http://dx.doi.org/10.1109/TC.2010.262
http://dx.doi.org/10.1016/j.microrel.2015.06.117
http://dx.doi.org/10.1016/j.microrel.2015.06.117
http://dx.doi.org/10.1016/j.microrel.2015.06.117
http://dx.doi.org/10.1109/TIM.2009.2025469
http://dx.doi.org/10.1109/TIM.2009.2025469
http://dx.doi.org/10.1109/TIM.2009.2025469
http://dx.doi.org/10.1109/TIM.2009.2025469
http://www.xilinx.com
http://www.xilinx.com
http://www.xilinx.com
http://refhub.elsevier.com/S0951-8320(15)00370-1/sbref21
http://refhub.elsevier.com/S0951-8320(15)00370-1/sbref21
http://refhub.elsevier.com/S0951-8320(15)00370-1/sbref21
http://refhub.elsevier.com/S0951-8320(15)00370-1/sbref21
http://dx.doi.org/10.1109/FPL.2012.6339222
http://dx.doi.org/10.1109/TIE.2011.2134054
http://dx.doi.org/10.1109/TIE.2011.2134054
http://dx.doi.org/10.1109/TIE.2011.2134054
http://refhub.elsevier.com/S0951-8320(15)00370-1/sbref24
http://refhub.elsevier.com/S0951-8320(15)00370-1/sbref24
http://refhub.elsevier.com/S0951-8320(15)00370-1/sbref24
http://refhub.elsevier.com/S0951-8320(15)00370-1/sbref24
http://dx.doi.org/10.1016/j.ress.2015.06.008
http://dx.doi.org/10.1016/j.ress.2015.06.008
http://dx.doi.org/10.1016/j.ress.2015.06.008
http://www.xilinx.com
http://dx.doi.org/10.1109/TNS.2008.2001422
http://dx.doi.org/10.1109/TNS.2008.2001422
http://dx.doi.org/10.1109/TNS.2008.2001422
http://dx.doi.org/10.1109/TNS.2008.2001422
http://refhub.elsevier.com/S0951-8320(15)00370-1/sbref29
http://refhub.elsevier.com/S0951-8320(15)00370-1/sbref29
http://refhub.elsevier.com/S0951-8320(15)00370-1/sbref29
http://dx.doi.org/10.1016/j.microrel.2015.04.003
http://dx.doi.org/10.1016/j.microrel.2015.04.003
http://dx.doi.org/10.1016/j.microrel.2015.04.003
http://www.xilinx.com
http://www.xilinx.com
http://dx.doi.org/10.1109/ISVLSI.2006.62
http://dx.doi.org/10.1109/ISVLSI.2006.62
http://dx.doi.org/10.1109/DFT.2007.25
http://dx.doi.org/10.1109/DFT.2007.25
http://dx.doi.org/10.1109/FPL.2009.5272410
http://dx.doi.org/10.1109/FPL.2009.5272410
http://dx.doi.org/10.1109/FCCM.2010.16
http://dx.doi.org/10.1109/FCCM.2010.16
http://dx.doi.org/10.1109/IOLTS.2009.5195990
http://www.xilinx.com
http://www.xilinx.com
http://dx.doi.org/10.1109/ICEEE.2010.5660842
http://dx.doi.org/10.1109/ICEEE.2010.5660842
http://www.xilinx.com
http://www.xilinx.com
http://dx.doi.org/10.1109/ISSOC.2011.6089684

	Synchronization of faulty processors in coarse-grained TMR protected partially reconfigurable FPGA designs
	Introduction
	Fault tolerant systems based on DPR and TMR
	Proposed synchronization approaches
	Approach 1: cyclic resets
	Approach 2: synchronization memory and address force
	Approach 3: synchronization interrupt with synchronization memory
	Approach 4: complete hardware-based synchronization

	Implementation details
	Software restrictions for approaches 1 & 2
	Implementation of the hardware synchronization interface
	Test procedure

	Implementation and test results
	Conclusions and future works
	Acknowledgements
	References




