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ABSTRACT This paper proposes a two-stage local path planning approach to deal with all kinds of scenarios
(i.e. intersections, turns, roundabouts). The first stage carries out an off-line optimization, considering vehicle
kinematics and road constraints. The second stage includes all dynamic obstacles in the scene, generating a
continuous path in real-time. Human-like driving style is provided by evaluating the sharpness of the road
bends and the available space among them, optimizing the drivable area. The proposed approach is validated
on overtaking scenarios where real-time path planning generation plays a key role. Simulation and real results
on an experimental automated platform provide encouraging results, generating real-time collision-free paths
while maintaining the defined smoothness criteria.

INDEX TERMS Automated driving, path planning, overtaking, intelligent transportation systems.

I. INTRODUCTION
Urban environments are the most complex environment for
the development of automated vehicles due to the multiple
road users interactions (i.e. pedestrians, bikes, motorcycles)
comparedwith highway roads. Urban road layout is alsomore
complex than in its highway counterpart, presenting many
more configurations in a tighter space, including straight
stretches, intersections such as T-turns, 4-way turns, U-turns,
roundabouts, etc. Both challenges demand a fast response
from the automated vehicle side to properly respond to any
situation, adapting to the motion and intention of other road
users.

Current motion planning solutions have been focused on
treating each road layout configuration separately or for
a specific planning purpose or urban use case. A survey
of motion prediction and risk assessment method was pre-
sented in [1], specifically studying the maneuver intention at
road intersections. A motion planning approach dealing with
yielding maneuvers both at intersections and roundabouts
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was presented in [2]. Similarly, De Beaucorps et al. [3]
presented a decision making algorithm covering unsignalized
intersections and roundabouts in presence of other vehicles.
Roundabouts were approached by [4] with parametric curves
from a comfort perspective. In the same way, [5] used para-
metric curves at roundabouts for comfort and safety reasons.
Unsignalized roundabouts were treated in [6] developing an
interaction-aware behavioral planner with special interest in
the safety of the merging maneuver. Overtaking maneuvers
represent one of the most dangerous use cases in urban
driving scenarios [7], [8]. The main reason for overtaking
accidents is associated with a failure to recognize hazards by
the driver [9]: in particular, failing to leave enough space with
the overtaken vehicle.

The main concern when performing maneuvers involv-
ing other vehicles is to correctly recognize the risks in the
environment, in the case of overtaking, the intention and
estimation of the vehicle to overtake. From an automated
driving perspective, path planning generation plays a key role
in this maneuver. Research teams have put their efforts in
defining and developing algorithms to perform safer overtak-
ing and obstacle avoidance maneuvers. The role of the path
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planning in these maneuvers is essential, not only for design-
ing collision-free trajectories, but also to provide comfort to
the occupants of the vehicle.

The paper proposes a two-staged planningmethod to tackle
the overtaking maneuver in urban environments. It presents
a two-staged algorithm where the pre-planning stage pre-
computes optimal curves for all possible scenarios, con-
sidering vehicle kinematic and road information. Later on,
the real-time planning stage uses road topology informa-
tion and the path itinerary to optimize consecutively pairs
of curves loaded from the pre-planning stage, generating a
smooth and continuous path. This approach is extended to
scenarios with obstacles thanks to the generation of a virtual
lane, allowing to transform the dynamic problem into a static
path following scenario. A prediction of the obstacle’s and
ego-vehicle’s motion are considered there to generate a safe
path into the virtual lane. Finally, a solution is proposed for
scenarios where an obstacle blocking the lane is detected
while performing the overtaking maneuver using a fallback
virtual lane to return safely to the original lane.

The rest of the paper is structured as follows: Section II
presents a review for motion planning for the overtaking
maneuver. Our methodology for path planning in static and
dynamic environments is thoroughly explained in Section III
and Section IV respectively. Results in static and dynamic
scenarios are presented in Section V. Finally, Section VI
presents the conclusions and discussion for future works.

II. RELATED WORK
The obstacle avoidance maneuver in automated vehicles
involves complex decision making, considering obstacle
information and trajectory generation. In the late 90s, Shiller
and Sundar [10] determined the sharpest feasible maneuver
for a vehicle using the minimum distance from which a static
obstacle cannot be avoided at a given speed. The generation
of collision avoidance maneuvers in emergency scenarios
was also treated in [11], where a model predictive controller
(MPC) was presented, considering stabilization and collision
avoidance as a single problem.

Optimization approaches have been very popular to
determine optimal trajectories for the overtaking problem.
Shamir [12] found that the shape and time of the trajec-
tory in a lane change does not depend on the velocity of
the obstacle. They formulated an optimization problem for
the lane change trajectory considering maximal acceleration
during the maneuver as the only dynamic constraint, mini-
mizing jerk. Murgovski and Sjöberg [13] also addressed the
overtaking problem from an optimization point of view min-
imizing the error on the reference velocity and position tra-
jectory to plan the entire maneuver in one optimization step.
Karlsson et al. [14] used a model predictive controller in an
overtaking maneuver for slow leading vehicle, with oncom-
ing traffic in the opposing lane. Andersen et al. [15] pro-
posed a visibility maximization method by providing a blind
spot definition. This allows the system to determine whether

its overtaking trajectory is safe, based on its perception in
real-time.

The geometric characteristics of the trajectories defined for
the overtaking also have been subject to study, with several
curves taking precedence in the field. Xu et al. [16] use quar-
tic and cubic polynomials for trajectory generation, applying
an iterative path and speed optimization. Polynomials were
also used in [17], this time of cubic order, to define the lane
change trajectory with good results. Different security lateral
distances between overtaking vehicles and obstacles in the
lane change maneuver were defined in [7] using obstacle
dimensions.

Quintic polynomials produced a smoother curve than quar-
tic and cubic approaches, and ensure C2 continuity as found
by González et al. [18]. This study used quintic bézier
curves also to generate a continuous speed profile, where
the quintic curves provide a smooth jerk and acceleration.
Artuñedo et al. [19] also used bézier curves in a real environ-
ment along with collision avoidance. Its method calculated
several trajectories in the space ahead and selected the best
candidate based on a cost function in a dynamic environ-
ment. Qian et al. [20] combined a sublex optimization of
the quintic-curves path with a reference speed profile opti-
mization using an MPC that considers dynamic and energy
consumption constraints. You et al. [21] also used quintic
curves in a collaborative strategywhere they apply the infinite
dynamic circles approach for detecting possible collisions.

Fu et al. [22] combined the circle navigation method with
cubic splines to analyze the risk of collision and generate
collision-free trajectories. A road course estimation on a
grid-based representation of the environment is proposed
in [23], this approach benefits from offline maps to gener-
ate collision-free paths combining A* and RRT graph-based
algorithms. Hundelshaussen et al. presented an ego-centered
occupancy grid-based method for drivability [24], combining
it with the tentacles that are used for evaluating it and to per-
form the motion, integrating the method on the finalist Team
AnnieWAY’s vehicle of the DARPA Urban Challenge [25].

Mouhagir et al. proposed a method to deals with the
uncertainty in the perception of the environment by combin-
ing Belief Functions to build an evidential occupancy grid
and clothoid tentacles for trajectory planning on dynamic
environments [26]. The evidential grid considers the safety
distances between the automated vehicle and the obstacles,
and they enhance the binary occupancy grid by including
the road limit and the longitudinal expansion of the dynamic
obstacles.

Most of the strategies described above address the lane
change problem from a spatial point of view. From a time-
based approach point of view, Nilsson et al. [27] evaluated
the appropriate inter-vehicle traffic gap and time instance to
perform a lane change maneuver. There, reachability analysis
is done to ensure safe margins and satisfying the physical
limitations of the road.

From a vehicle-modeling perspective, Petrov and
Nashashibi [17] proposed kinematic modeling of the relative
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FIGURE 1. Path planning system architecture.

inter-vehicle kinematics during the overtakingmaneuver with
no communications, and adaptable to multiple-vehicle sce-
narios. Ji et al. [28] took into consideration the road geometry
and obstacles dynamic constraints using trigonometric and
exponential functions, respectively. For the collision avoid-
ance path planning a 3D potential field was used. Then,
it uses a multi-constrained MPC for path-tracking, trying to
minimize the risk through evasive maneuvering. Dixit et al.
also used an MPC framework, this time a robust implemen-
tation using reachability analysis alongside potential fields to
compute safe areas to perform the overtaking maneuver in
highway scenarios [29]. Finally, Wei et al. used a non-linear
MPC for a collision-free corridor. It uses driver data in risk
scenarios to study hazards and account for them in different
scenarios, including overtaking a slow leading vehicle [30].

Recently an emphasis on data-driven and end-to-end solu-
tions has gained weight in the field. Ngai and Yung [31]
proposed a multiple-goal reinforcement learning (MGRL)
framework in a simulation environment with multiple agents
for the overtaking maneuver. Kaushik et al. [32] and
Xie et al. [33] proposed deep learning approaches. The first
one used reinforcement to train its agents in highway envi-
ronments. While the second, used long short-term memory
(LSTM) networks to predict agents’ actions and decide upon
lane changes.

Authors in the literature review target dynamic environ-
ments as specific scenarios: emergency scenarios in [11],
overtaking as a singular scenario in [12], [13] from a dynam-
ics point of view, in [14], [15] as a predictive point of
view with other obstacles, overtaking as a geometric problem
in [16]–[25], focusing on the occupancy of the space in [27],
from a vehicle-modeling point of view [17], [28] or from the
use of data-driven data [29]–[33], among others.

Meanwhile, the proposed approach aims to propose a
general method to adapt the static path to fit with any
dynamic scenario by generating a virtual lane overlying the
original one. It comprises the points covered by the other
authors: emergency situations, consideration of vehicle and

surrounding obstacles dynamics, the geometry of the path,
discretization of the space and use of a priori data (static
information) such as the kinematics of the vehicle for the pre-
planning stage.

A. WORK CONTRIBUTIONS
This work presents a path planning solution based on two-
stages: pre-planning and real time-planning. Figure 1 shows
the proposed path planning architecture. The pre-planning
stage [34] (left part of Fig. 1) generates the optimal curve
for each feasible single-turn scenario, considering the static
information of the road and the vehicle kinematics. The real-
time stage (right part of Fig. 1) generates a continuous path
by loading the optimal curves from the previous stage that
fit better with the road layout [35], considering a planning
horizon of two curves. The generation of virtual drivable
lanes significantly reduces the computational load, being able
to generate optimal trajectories tomanage dynamic scenarios.

The main contributions of this work are the following:
• Modeling all kind of road layout as a set of single-turn
scenarios

• Off-line curve optimization for each feasible single-
turn scenario considering static information of road and
vehicle kinematics.

• Human-like turning behavior, cutting consecutive
curves in S-shape turns or opening them in U-shape
turns, generating smoother paths.

• Real-time analysis of sharpness and space between turns
to reduce curvature profile and ease path tracking.

• Real-time planning of two consecutive turns with curves
loaded from pre-planning stage.

• Virtual lane generation to handle overtaking maneuvers
in dynamic environments

• System validation on a real platform, including a com-
parison with other planning methods.

III. PATH PLANNER FOR STATIC ENVIRONMENTS
The local planner for static paths is divided in a pre-planning
(left part of Fig. 1), and real-time stage (middle part of Fig. 1).
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In the pre-planning stage, a series of primitives curves are
defined, called single-turn scenarios (optimal curve evalua-
tion sub-stage in Fig. 1), using three parameters (angle of
turn, and distance available before and after the turn). Then,
the optimal parametric curve for these single-turn scenarios
is pre-computed and saved into databases.

For the static path sub-stage in the real-time planning,
the single-turn scenarios that better fit with the upcoming
road layout configuration is selected from the databases as
shown in Fig. 1. That way, any road layout configuration
is modeled as a series of turns. A planning horizon of two
curves is chosen, where the algorithm optimizes the upcom-
ing pair of curves for the corresponding turns in the itinerary,
according to smoothness criteria. This local planner finally
generates a smooth continuous path that is later tracked by
the vehicle.

A. ASSUMPTIONS AND CONSTRAINTS
The algorithm considers a series of assumptions and
constraints concerning the road, vehicle kinematics and
execution times, as follows:
(i) Concerning to the road: Information about the road and

obstacles ahead is coming from the perception stage.
The global planner is assumed to be accurate, as well
as the vehicle positioning. This accurate global plan-
ner provides a series of way-points to the local plan-
ner, which form the itinerary to follow, along with the
lane width. Since lane width in urban roads is usually
between 3 and 3.7 meters, a 3 meters lane width is
assumed for our purposes.

(ii) Concerning to the automated vehicle: The vehicle model
is a well-known non-holonomic system, whose limi-
tations are defined by its physical parameters such as
width, length, and the maximum steering angle, con-
straining the generated curves to its maximum curvature.

(iii) Concerning the execution time: real-time capabilities
play a key role in path planning implementation, espe-
cially in emergency situations. Quartic Bézier curves are
chosen as primitive for the path generation, ensuring
path continuity by introducing the curvature constraint
and presenting a low computational cost.

B. PRE-PLANNING STAGE
This first stage pre-computes the optimal curve of the vehi-
cle. It considers the aforementioned constraints, saving the
parameters of the optimal curves into databases.

Fig. 2 illustrates the pre-planning stage optimization. Each
path generation is carried out in a given distance-based
horizon where three singular points are extracted from the
global planner: 1) the initial point Gn−1 (the closest singular
point to the vehicle position); 2) the ending point Gn+1 (end
of distance-based horizon optimization); and 3) the turning
point (Gn), which is the singular connecting the initial and
ending points of the single-turn model.

Based on this global planner discretization, the off-line
local planner defines the single-turn scenarios with three

FIGURE 2. Single-turn scenario with optimal curve search [34].

parameters, allowing to model the road layout as a set of
turns:

• The angle of the turn (α)
• The distance from the initial point to the turning point
(distseg1 )

• The distance to exit the turn (distseg2 )

To cover the maximum number of single-turn scenarios,
the algorithm iterate over the three parameters. Since these
parameters are the indexes of the databases containing the
optimal curves, a trade-off between database resolution and
database size is needed to find the minimum variation step
for these parameters. First, the turn angle is defined into the
following range:

• The minimum α considered is 40◦ being the maximum
steering angle of the platforms.

• The maximum α is 180◦, i.e. a straight line.
• The variation step for α is 5◦, since it is the minimum
value that ensures a bounded lateral error of 20cm in
the worst possible turn, which is the one whose angle is
the maximum turning angle of the vehicle (around 40◦),
with a maximum heading angle error of 2.5◦, that main-
tains database access time and size feasible.

Second, the distances distseg1 and distseg2 are defined in the
following range: 2m ≤ distseg1 |distseg2 ≤ 40m by 1m

• The minimum distance for distseg1 and distseg2 is 2m
since it is the minimum distance allowing the vehicle
to perform the sharpest feasible turn, considering the
kinematic model of the vehicle: D = kmax = tan(φ)/
L = 1/R, where φ is the maximum steering of the
platforms (minimum value is 38.5◦), L is the vehicle
length (being 1.25m for small vehicles), kmax is the
maximum curvature (0.63m−1) and D is the minimum
distance for this maximum curvature, which would be
1.58m, value rounded to 2m.

• The maximum distance considered for distseg1 and
distseg2 is 40m, being the perception range for the detec-
tion of obtacles, defining the maximum distance of the
following singular point from the global planner.

VOLUME 8, 2020 128733



F. Garrido et al.: Two-Stage Real-Time Path Planning: Application to the Overtaking Manuever

• The variation step for changing these distances is
1m, to guarantee real-time evaluation in the set of
databases [34].

Optimal curves for right-turns are computed geometrically
by symmetry of the equivalent left single-turn. A quartic
Bézier curve is generated for each single-turn iteration using
Equation 1, here n = 4 is the degree of the polynomial
equation and Pi are the control points defining the curve.
The five control points Pi are moved both longitudinally and
laterally to find the optimal curve. Equation 1).

B(t) =
n∑
i=0

(
n
i

)
(1− t)n−it iPi t ∈ [0, 1] (1)

All generated curves must ensure continuity with the
maximum curvature constraint and the curvature at the ini-
tial and final segment. 4th degree Bézier curves are chosen
because they are simple to manipulate as they are defined
by control points. Additionally, the Convex Hull property of
Bézier curves constrains path generation to remain within the
lane width. These curves present a low computational load
since they are defined from the equations of the analytical
method [36]

The optimal curve is chosen using the cost function Q
shown in Equation 2, which minimizes the curvature (k) and
its derivative (k̇) in all the points of the curve.

Q =
∑n

i=0
|ki| + |k̇i| (2)

Four different databases of optimal curves are generated,
where the initial and final position of the ego-vehicle in the
lane is as follows:
1) DB1: Initial position at lane center, final position at the

lane center.
2) DB2: Initial position at lane center, final position

displaced to the lane border.
3) DB3: Initial position displaced to the lane border, final

position at the lane center.
4) DB4: Final position displaced to the lane border, final

position displaced to the lane border.
This feature emulates the behavior of the human drivers,

who use the entire width of the lane depending on the road
layout for reducing the curvature profile. These curves pre-
generated are available in the module Databases of optimized
curves, presented in the bottom part of the pre-planning
stage (Figure 1).

C. RT PLANNING: THE STATIC PATH SUB-STAGE
Flowchart 3 explains the process to plan the complete trajec-
tory in real-time for static paths. As shown in the middle part
of Fig. 1, this phase can be divided into three fundamental
tasks:
1) Next curves analysis: It analyses the turns and straights

stretch of the road. It determines the available space
among them and the sharpness of the turns.

2) Optimal junction: A real-time evaluation seeks the
optimal location for the junction point between curves,

FIGURE 3. Real-time path planning flowchart.

evaluating turns in pairs. It loads the better curves from
the databases, based on the previously defined cost
function Q.

3) Add planned curves to path: Once the junction point
is found, the algorithm assembles the optimal curve for
the upcoming turn with the parameters loaded from the
database. In addition, it keeps the optimal curve param-
eters for the following turn, which has been planned in
advance.

Finally, after repeating the process for all the turns on
the itinerary, the complete static path is fed to the dynamic
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path component, which modifies it according to the obstacles
present in its path (explained in the next section).

This approach can compute the distance among different
road elements such as turns, intersections, and roundabouts.
For every turn, the real-time algorithm plans the curve that
better fits by considering a pair of turns: the upcoming and
the following one.

An example of this behavior is shown in Fig. 4, consisting
of a two-lane road where some consecutive turns. In the
figure (4a), point A shows the departure and point B the
destination. The red points represent the way-points defining
the itinerary for the path-following scenario, received from
the global planner.

FIGURE 4. Real-time path planning process: from loading the curves from
the databases to get the whole path.

Using this itinerary the algorithm computes the angles of
the turns that will be found in the itinerary (α1, α2, α3 and α4),
and its corresponding inter-distance (segment1, segment2,
segment3 and segment4). The figure (4a) shows the process
to find the best junction point between the turns α1 and α2
considering the sharpness of both.

First, a criteria is defined to limit the longitudinal posi-
tion of the junction point in the segment between both turn
center points, by evaluating the sharpness of the two turns
(see table 1).

TABLE 1. Criteria for longitudinal position optimization of junction
points.

In the case of Fig. 4, as α1 is sharper, the algorithm searches
the junction in the half of the segment2 which is closer to α2.
That way, the algorithm gives more possibilities to plan the
curve for the sharper turn, which is more difficult to track.

Additionally, the curves direction of rotation (d.o.r), or con-
cavity change, is considered to decide whether to start and

TABLE 2. Criteria for lateral position in lane of junction points.

end the curve, at the center of the lane or, close to the lane
boundary. For this purpose, another criteria for the lateral
position in the lane of the junction point is defined in Table 2.

Then, the algorithm can determine which databases are
loaded since the lateral position in the lane for the two
upcoming turns has been evaluated before. Table 3 shows the
different possibilities for loading the optimal curves passing
trough the turns layout.

TABLE 3. Databases selection for consecutive optimal curves.

Coming back to the example of Fig. 4, as α1 is a right turn
and α2 is a left turn, there is a concavity change. In this case,
the junction point is placed at the center of the lane, due to
the previously described smoothness criteria.

Therefore, the algorithm generates the optimal pair of
curves for both turns by loading them from the databases
for each position of the junction point. The localization of
both curves is minimized considering the best junction. The
parameters α1 and α2 are saved for the next iteration. The
process is repeated for the following turns, getting the whole
static path as depicted in the figure (4b). In the next iterations,
the difference lies in the upcoming turn will plan the follow-
ing curve.

IV. DYNAMIC PATH SUB-STAGE: PLANNER
OBSTACLE MANAGEMENT
This section describes how the dynamic obstacles are man-
aged for the path planner (right part of the figure 1), creating
collision-free paths [37]. For the sake of clarity, the dynamic
planner is introduced using an overtaking maneuver as exam-
ple, generating four consecutive curves (see Fig. 5): two for
the first lane change and another two for returning to the
original lane once the obstacle is overtaken.

The local path planner for dynamic environments follows
three stages: 1) grid discretization; 2) virtual lane generation;
and 3) path re-planning (see Fig. 1). For the adaptation of the
static to dynamic path generation, a virtual lane is proposed.
To accomplish this generation, a grid discretization of the
road was used, where the obstacle information is perceived
by the sensors. This virtual lane overlays the current lane
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FIGURE 5. Trajectory planned with the proposed algorithm for obstacle
avoidance.

and modifies the way-points of the itinerary, re-planning only
the driving area where interaction with other traffic agents
occurs.

A. GRID DISCRETIZATION
The purpose of using grids is to obtain a better description of
the road representing the space as free or occupied by means
of cells, making a discretization of the road space allowing
the system to consider the uncertainty of the sensors, and as a
result, the dynamism of the road [38]. In case any obstacle is
detected in front of the ego-vehicle, the dynamic path planner
will receive its Oriented Bounding Box (OBB). In our system,
it receives the OBB of the obstacle as 2D coordinates of the
rear part of the vehicle in front, i.e. the distance from the
automated vehicle to such obstacle [39].

The OBB only provides information about the obsta-
cle width for a front obstacle, leaving the vehicle length
unknown or not accurate enough. Then, an obstacle clas-
sification is performed to determine the security distance
according to the vehicle type, a similar classification is
done in [7].

TABLE 4. Obstacle types classification based on the width.

This classification is performed using Table 4. There, dif-
ferent vehicle types are defined based on the European Euro
Ncap Structural category and the American US EPA Size
Class regulations. For each vehicle type, both the width-range
and its equivalent length have been determined by analyzing
the dimensions of their reference vehicles. It provides obsta-
cle length estimation for each obstacle, which in turn allows
the lateral and longitudinal safety distances to be properly
determined, to plan the avoiding maneuver.

The space discretization is performed by representing the
space occupied by the obstacle after the length prediction
in the grid matrix. This area corresponds to the axis-aligned
Bounding Box (BB), depicted with the red rectangle in Fig. 6.

FIGURE 6. Virtual lane generation for obstacle avoidance.

This discretization allows easier recognition of the free space
on the road, where space occupied the BB by in the discretiza-
tion, is represented with the red crosses. Once the obstacle’s
BB is formed, lateral and longitudinal safety distances are
added (external green rectangle). On the one hand, a lon-
gitudinal distance of the ego-vehicle length is considered
both on the front and the rear, based on previous works in
the literature [12], [40]. On the other hand, a safety lateral
distance is chosen from Table 4, according to the obstacle
type.

B. VIRTUAL LANE MODULE
Based on this grid discretization, a virtual lane is built to
avoid obstacles on the path. All obstacles are classified, and
the safety area is defined, as shown in purple lanes for the
overtaking maneuver (Fig. 6).

The aim of the virtual lane is to modify the itinerary
(A,B) by adding some supplementary way-points (swpn) to
the global path, resulting in (A, swp1, swp2, swp3, swp4,B).
These points define the center of the new virtual lane, from
where its limits are computed geometrically.

The generation of the virtual lane starts from the internal
points of the obstacle’s safe area k1 and k2. From these points
are placed the supplementary way-points swp2 and swp3 on
the left lane. It constitutes the last way-point for the first lane-
change and the first way-point for the second lane-change,
respectively. Finally, the points swp1 and swp4 for the initial
and final phases of the lane-changes are computed, placing
them in the departing right lane.

The angles ϕ1 is used to find the least slope on the virtual
lane, and ϕ2 (Fig. 6) is used to determine the location of the
point swp2. The last step moves laterally the way-points of
the new global itinerary that form the center of the virtual
lane, with a positive and a negative distance of half of the
road width.

Both angels (ϕ1 and ϕ2) are modified from 0◦ degrees to
the steepest (the worse case is 45 ◦), getting the position of
these two way-points. Then, the real-time local planner finds
the optimal junction point between the two curves for the
lane-change, as explained in the static path planner. Finally,
the optimal virtual road is generated (in purple in Fig. 6). This
way, just by modifying the global path we use the static local
planner for dynamic behavior, only searching in real-time the
least feasible slope for the lane-change.

For moving obstacles, the grid is modified considering the
obstacle speed to predict the space in front. In the virtual lane
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module, only the worse case is considered, it means, using
maximum speed and acceleration, as described in Equation 3,
based on [41],

xobstpred . = xobst + vMaxobst ∗ vMaxobst/accMaxobst (3)

where xobstpred represents the prediction for the obstacle’s
occupied space, xobst is the current position, and vMaxobst and
accMaxobst are the maximum speed and acceleration of the
obstacle, respectively. The new supplementaryway-points for
the new virtual lane are calculated in the same way as shown
before. The resulting new virtual lane for moving obstacles is
depicted in Fig. 7.

FIGURE 7. Virtual lane generation for moving obstacles considering the
obstacle’s occupied space prediction.

C. RE-PLANNING METHOD
The virtual lane module gives the boundaries used in the
re-planning module. Our real-time re-planning approach con-
siders the speed and acceleration of both ego-vehicle and
obstacles. It re-computes the trajectory if there is a gap
between the predicted and traveled distances. The re-planning
method is presented in the Algorithm 1.

Algorithm 1 Re-Planning Alg. for Dynamic Path Generation
1: Receive global path and static local path
2: Check if there is any obstacle in the path
3: Check if ego-vehicle is faster than obstacle
4: Compute accelerations of ego and obstacle
5: Compute distance covered by ego and obstacle on 1T
6: if dist. covered by ego or obst. in 1T > threshold then
7: Compute Time-to-collision (TTC)
8: if TTC ≤ 6 s then
9: Predict distance covered by obstacle on TTC

10: Predict distance covered by obstacle on next1T
11: Project obstacle position
12: Compute dist. traveled by ego and obst. on 1T
13: Compute obstacle BB from obstacle width
14: Compute obstacle’s safe zone
15: Compute new global path and new virtual lane
16: Update previous speeds and accelerations

This process consists of the following steps: 1) The algo-
rithm receives from the static planning stage both the global
and the local path. 2) it checks if there is any obstacle in the
itinerary. 3) If it is faster than the ego-vehicle, which could
create a risk of collision. 4) In that case, the acceleration of

both ego-vehicle and obstacle is computed for predicting their
motion. 5) Besides, the algorithm computes the real distance
covered by both ego-vehicle and the obstacle in the last 1T.
This 1T is the parameter for the planning period, which is
under 0.1s to ensure a real-time performance. If this distance
is non-negligible, being higher than the desired threshold
(i.e. 0.5 meters for urban environments), then the compu-
tation of the new virtual lane begins. 6) Time To Collision
(TTC) is computed. Then the algorithm checks if the collision
would occur in the range of accuracy of the vision system
(i.e. <6 seconds for available perception). 7) Once the TTC
is computed, the algorithm can update the predicted distance
that both ego-vehicle and obstacle will cover in this time,
projecting the position of the obstacle ahead. 8) In the same
way, the prediction of the distances covered in 1T is done.
9) Then, the Bounding Box of the obstacle can be recomputed
from its projection, as well as the safety area for the avoidance
maneuver. 10) Finally, the supplementary way-points corre-
sponding to the new itinerary can be recomputed from the
safety area, following the virtual lane method, described in
the previous section.

D. FALLBACK RETURN-TO LANE MANEUVER
Figure 8 shows an example of the emergency scenario
described, where the fallback corridor is depicted in dark
green. This fallback trajectory is generated to cancel the
overtaking manuever after the ego vehicle’s perception sys-
tem detects a second obstacle ‘‘Obst 2’’ on its way. Then,
the system switches between the original global path to the
new one by adding only two new supplementary waypoints,
nswp3 and nswp4 depicted in green in Fig. 8, and removing
the supplementary waypoints corresponding to the curve for
returning to the lane after avoiding the first obstacle, i.e.
red swp3 and swp4. Finally, the system switches between
the original (red) to fallback (green) itinerary, computing the
fallback trajectory for returning safely to the original lane.

FIGURE 8. Emergency return to the lane maneuver under unexpected
vehicle in path.

V. EXPERIMENTS
This section evaluates the two-stage planning performance.
It was tested both in simulations and in an automated plat-
form. The simulation environment combines both Pro-Sivic1

and RTMaps2 software. Pro-SiVIC is used to simulate the

1www.civitec.com
2www.intempora.com
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driving environment, providing different car models. The
path planning algorithm is generated using RTMaps that
sends vehicle actuators’ commands to Pro-SiVIC environ-
ment.The experimental platform is a Cybercar. It is a low-
speed vehicle designed to operate on urban roads, both for
passengers and goods transport [42]. It is equipped with a
Real-Timne Kinematic Differential Global Positioning Sys-
tem (RTK-DGPS), an Inertial Measurement Unit (IMU) and
two front 2D Lidar sensors.

A. RESULTS FOR THE STATIC PATH PLANNER
First use case evaluates vehicle performance when the vehicle
is driven without any other traffic agent interaction. The test
is carried out in real vehicles using the Cybecar platform. The
proposed planning approach is compared with a Bézier-based
path generation without offline stage [43].

FIGURE 9. Planned path and metrics for evaluating the proposed
approach in a static environment.

Figure 9a shows the experimental area. The vehicle travels
from point O to point D, while the curves C1 to C10 repre-
sents singular points in the path. The black line shows the
itinerary or global path, the dark and light blue line represent
the planned path with the proposed approach, whereas the
red line represent the planned path with the entirely real-time
approach, respectively.

Fig. 9b depicts the curvature (solid line) and the curva-
ture derivative (dashed line) for both planners. Red color
is used for the proposed planning whereas blue color plots
the performance of the algorithm presented in [43]. One can
appreciate how both are significantly reduced in the proposed
approach. For example, the U-turn formed by curvesC2−C5,

corresponding to time 22-50s, the maximum curvature for the
proposed approach is under 0.2m−1 whereas it is over 1.1m−1

for [43]. Additionally, a difference of themaximum curvature
derivative can be highlighted, being 0.75m−2 for the proposed
approach and 5m−2 for [43].
The proposed planning is able to generate a real-time plan-

ning that presents a significantly smoother path, increasing
the ride comfort thanks to less abrupt changes in the curvature
profile.

B. RESULTS FOR THE DYNAMIC PATH PLANNER
This section evaluates the two-stage architecture when deal-
ing with traffic agent interactions. Specifically, an overtaking
maneuver scenario is used, evaluating both: 1) the generation
of the overtaking path in real-time; and 2) the ability to
provide a new trajectory in case of the maneuver is cancelled.

FIGURE 10. Virtual lane re-computation and path re-planning applied to
a wrong prediction of the obstacle dimensions.

Fig. 10a shows the initial scenario for the simulations.
The purple line represents the generated virtual lane for
overtaking the obstacle whereas the green line depicts the
re-planning carries out during the maneuver based on the
time-to-collision. With the new constrains, the static local
planner computes the new path depicted in light green fitting
into the new virtual lane, overtaking the obstacle safely.

The figure 10b shows that the smoothness of the
re-planning path. Solid red line represents the original path.
Solid blue line depicts the re-planning path. One can appreci-
ate how the proposed approach avoids curvature peaks or dis-
continuities, being the curvature peak below 0.1m−1.

A fallback path generation during an overtaking maneuver
is evaluated in Fig. 11a. A new obstacle is detected when
performing the overtaking (Obst 2), being able to cancel the
maneuver and returning the vehicle to its lane. The fallback
path is generated by the creation of a new virtual lane, shown
in green. The last way-points of the original avoiding vir-
tual lane are replaced by new points in the right lane while
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FIGURE 11. Emergency return to the lane re-computation of the virtual
lane, aborting the original avoiding maneuver.

leaving enough distance respect to the first obstacle (Obst 1).
Curvature evaluation is presented in Fig. 11b. Despite the
emergency maneuver, the fallback path still has a low-
curvature profile (below 0.2 m−1), validating the proposed
approach.

VI. CONCLUSIONS AND FUTURE WORK
This paper proposes a local path planning algorithm divided
into two sub-stages: pre-planning and real-time planning. The
former optimize offline every possible single-turn scenario
considering road layout and vehicle model as constrains. The
latter creates a continuous path by optimizing two consec-
utive curves using the first stage. Concavity changes of the
turns are used to create four databases, providing a human-
like behavior by using the full lane width. Thanks to the pre-
planning stage, the real-time stage only needs to optimize the
junction point between curves, reducing the computational
load. Experiments provide encouraging results, providing
low curvature-profile paths even in emergency situations.

The proposed planner is evaluated in dynamic environ-
ments in an overtaking maneuver. A virtual lane modifies
the original itinerary, easily adapting the trajectory. The algo-
rithm uses a grid-based discretization of the space to classify
the obstacle and predict its length, being able to either extend
the path to finish the maneuver or generate a fallback trajec-
tory in case the maneuver is cancelled.

Futureworkswill be focused on the decision-making stage,
extending the current work to deal with scenarios where more
simultaneous traffic agent interactions occur.
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