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Abstract

Fungal infection represents up to 50% of yield losses, making it necessary to ap-

ply effective and cost efficient fungicide treatments, whose efficacy depends on

infestation type, situation and time. In these cases, a correct and early identifi-

cation of the specific infection is mandatory to minimize yield losses and increase

the efficacy and efficiency of the treatments. Over the last years, a number of

image analysis-based methodologies have been proposed for automatic image

disease identification. Among these methods, the use of Deep Convolutional

Neural Networks (CNNs) has proven tremendously successful for different vi-

sual classification tasks.

In this work we extend previous work by Johannes et al. (2017) with an

adapted Deep Residual Neural Network-based algorithm to deal with the de-

tection of multiple plant diseases in real acquisition conditions where different

adaptions for early disease detection have been proposed. This work analyses the

performance of early identification of three relevant European endemic wheat

diseases: Septoria (Septoria triciti), Tan Spot (Drechslera triciti-repentis) and

Rust (Puccinia striiformis & Puccinia recondita). The analysis was done using
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different mobile devices, and more than 8178 images were captured in two pi-

lot sites in Spain and Germany during 2014, 2015 and 2016. Obtained results

reveal an overall improvement of the balanced accuracy from 0.78 (Johannes

et al. (2017)) up to 0.87 under exhaustive testing, and balanced accuracies

greater than 0.96 on a pilot test performed in Germany.

Keywords: convolutional neural network, deep learning, image processing,

plant disease, early pest, disease identification, Precision Agriculture,

phytopathology

1. Introduction

Besides weeds, most relevant biotic stress factors in winter wheat production

are caused by fungal pathogens. In cases of intensive production systems, like in

Central Europe, these can cause yield losses up to 50% (Oerke (2006)). Hereby,

an effective and cost efficient fungicide treatment adapted on the infestation5

situation and time (Hanus (2008)) is compulsory. This requires continuous

plant stock controls to monitor plant health, which are both time and cost

intensive (Kübler (1994)). A key factor for an appropriate decision making in

crop protection is the detailed knowledge of the occurrence of current pathogen

species. The visual identification of fungal disease symptoms even at early10

infestation stages and the correct assignment to a special pathogen is still a very

challenging task due to similar stress symptoms caused by various pathogens and

abiotic stress symptoms likewise (Oerke et al. (2010), Stafford (2000)). In view of

vast agricultural regions where contact to crop protection experts is very limited,

it would be a real advantage to provide easily accessible identification support15

tools to enable effective infestation situation-based crop protection measures

(Singh and Misra (2017)). In more advanced countries with well-trained farmers

and good advisory structures, where normally very intensive production systems

are established, there is the need to hold crop protection measures efficient, due

to a constant increasing disease pressure. Here, an early pathogen detection20

is the basic prerequisite to derivate the most effective crop protection measure
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(Martinelli et al. (2015)). This demand gets underlined by the more frequent

occurrence of resistant fungi races, which negatively affected the performance

of modern fungicides (Brent and Hollomon (1995)).

In the last decades, significant efforts and various concepts in crop science25

can be observed to ease plant health control by using sensor techniques and

simulation models. In this context, thermography, chlorophyll fluorescence and

hyperspectral sensors are seen as very promising technologies. Furthermore,

it is stated that imaging systems are preferable to non-imaging systems for the

purpose of detecting plant diseases Mahlein et al. (2012)). Nevertheless, the dis-30

tribution of these technologies for decision support in broad agricultural practice

is fairly low. Early studies around the year 2000 point out that the reason for the

low usage are primarily the high uncertainty upon which the automatically gen-

erated identification or prediction results are founded, and the excesively high

complexity of the systems (Kuhlmann and Brodersen (2001),McCown (2002)).35

In a more recent study, the missing of comprehensive techniques for rapid dis-

ease detection is still underlined on the example of Fusarium spec. detection

(Bauriegel and Herppich (2014)). With regard to developing countries, for sure

it can be stated that the maturity of described technologies, will be much too

expensive.40

A recent approach to identify multiple plant diseases is using statistical infer-

ence methods to setup picture recognition algorithms. These can be applied by

using mobile capture devices, which allows a broad availability for agricultural

practice (Johannes et al. (2017)). Within this work it was shown that there is a

potential to improve the developed algorithm’s performance on the generation45

of reliable early disease diagnosis. Deep Convolutional Neural Networks (CNNs)

are seen as breakthrough for image classification and seem to be very promising

for this purpose.
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2. Related work

Classical Computational visual approaches have been extensively used to50

address automated plant identification. In this sense, pioneering studies from

Sannakki et al. (2011) automatically graded diseases present on plant leaves.

Their proposed algorithm employed image processing techniques to analyze the

color-specific information on infected plants. A first k-means based clustering

was performed for each image pixel to isolate the infected spots and subse-55

quent grading was performed based on fuzzy logic techniques. Other works

like Xie et al. (2016) focused on reducing the computational complexity of the

automation algorithm with relative success. In 2016, Siricharoen et al. (2016)

developed a technique that combined texture, color and shape to detect the

presence of a specific disease on a plant. From 2014 to 2016, Johannes et al.60

(2017) generated an extensive field database for wheat crop that included Septo-

ria (Septoria triciti), Tan Spot (Drechslera triciti-repentis) and Rust (Puccinia

striiformis, Puccinia recondita) diseases at different phenological stages over

more than 36 wheat plant varieties. The algorithm was validated on real field

conditions showing an AuC (Area under the Receiver Operating Characteristic65

-ROC- Curve) above 0.80 and accuracies around 0.82 for late and medium stage

diseases and around 0.76 for early stage diseases. The algorithm was based on

a classical machine learning-supported image analysis approach, consisting of a

first image preprocessing and normalization stage that included a preliminary

filter to detect the candidate regions, and a second stage in which textural and70

color descriptors from the candidates were coupled with a random forest based

classifier. Although results were highly promising, the limited expressive power

of the color and textural descriptors kept the model from further generalizing,

thus laying on the bias extreme of the bias-variance trade-off. This means that

the developed algorithm could not take advantage of a larger number of training75

pictures.

As an alternative that has proven itself tremendously successful in overcom-

ing the expressive power limitation that characterizes traditional workflow-based
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computer vision approaches, Deep Convolutional Neural Networks (CNNs) pro-

vide a flexible framework that allows for the definition of models that act both80

as descriptive hierarchical feature extractor and as classifier. CNN network

topologies can be extended (e.g. by stacking more convolutional layers) in such

a way that their complexity grow to match the expressive power required by

any given objective task and data availability. The best known example of this

was 2012 ImageNet Large Scale Visual Recognition Competition (ILSVRC2012)85

Russakovsky et al. (2015), won by almost 10 percent points by the CNN de-

scribed in Krizhevsky et al. (2012a), which required the contenders to classify

a set of images onto 1000 different classes after being trained on over a million

images. The field of Computer Vision experienced a major shake-up that year,

and ever since that event, deep learning-based solutions have consistently been90

beating traditional workflow-based shallow approaches in almost every computer

vision task -e.g. image classification, single object classification and object de-

tection (Russakovsky et al. (2015)), semantic segmentation (Shelhamer et al.

(2016)), instance segmentation (Li and Malik (2016))), enabling the definition

and addressing of new tasks that were not even possible up until the appear-95

ance of these techniques (e.g. Visual Question Answering (Zhu et al. (2016))

or Dense Captioning (Johnson et al. (2016)), to name a few within the area of

supervised learning- and even surpassing human performance at some of them

(Russakovsky et al. (2015)).

All such approaches have been also extensively tested in a wide number of100

applications, ranging from medical diagnosis in dermatological (Esteva et al.

(2017)) or histopathological images (Litjens et al. (2016); Arajo et al. (2017)),

among others, to autonomous driving of cars ((Badrinarayanan et al. (2015) and

drones (Gandhi et al. (2017))), or quality control in manufacturing industries

(Masci et al. (2012)).105

Agricultural applications are not an exception to this trend, and deep neural

nets have been successfully been used to predict land use from remote sensing

images (Hu et al. (2015)), plant phenotyping (Pound et al. (2016)) or weed

scouting (Di Cicco et al. (2016)). As for plant disease identification, Sladojevic
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et al. (2016) applied an AlexNet-like architecture (Krizhevsky et al. (2012a))110

to model 13 different diseases from an image dataset obtained through inter-

net online search. Initiatives such as PlantVillage (Hughes et al. (2015)) have

allowed the generation of more than 50,000 expertly curated images of healthy

and infected leaves of 14 different crops (apple, blueberry, corn, grape) and a

total number of 26 different diseases. This database has served their promoters115

to develop a disease identification classifier (Mohanty et al. (2016)) based on

a pre-trained GoogleNet architecture (Szegedy et al. (2015)), where a transfer

learning approach was followed to adequate the model to the plant disease iden-

tification use case. Authors report an accuracy of 99.35% on their model on

a held-out test set. However, when the algorithm is tested under conditions120

different to the ones of the training database, the accuracy decreases down to as

low as 31.4%. The fact that the database is taken under controlled conditions

and the presence of only late stage diseases on the database precludes its use as

a real digital farming application where early disease detection on uncontrolled

illumination conditions is essential for a correct deployment. Besides that, these125

algorithms do not consider the case where more than one disease are present

in the same plant; therefore, models trained and tested on them will only be

able to detect the most visible disease, which is not necessarily the one of most

importance for the crop.

In this paper we extend the previous work on early disease detection from130

Johannes et al. (2017) by presenting and validating in real field conditions a

Convolutional Neural Network-based method that is able to cope both with

early disease stages and simultaneous diseases.

3. Material & Methods

3.1. Training and validation dataset135

An extensive dataset was generated to perform the training and validation of

the proposed algorithm. For that, we extended the field database from Johannes

et al. (2017), which contained a total number of 3637 images of wheat diseases
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during 2014 and 2015 acquisition campaigns. These images were taken on the

pilot sites of Spain and Germany under natural conditions. Examples of dataset140

pictures are depicted in Figure 1.

Figure 1: Examples of diseases images contained in the datasetJohannes et al. (2017)

The initial database was extended by the inclusion of images belonging to

the 2016 acquisition season, which also took place in Spain and Germany. These

pictures add 2350 new images for Rust, 239 for Septoria and 928 for Tan Spot,

thus yielding a total number of 8178 images, as depicted in Table 1.145

Table 1: Generated database for training and validation

Database name (acquisition time) Rust Septoria Tan Spot Other/Healthy Total

Wheat 2014 (W-2014) 471 700 183 65 1385

Wheat 2015 (W-2015) 516 1805 457 184 2189

Wheat 2016 (W-2016) 2350 239 928 867 3969

Total 3338 2744 1568 1116 8178

The pictures were acquired from expanded leaf from the upper leaf surface

and avoiding pictures with symptoms or signals on the margins of the leaves,

and were photographed avoiding direct light. No other limitations were imposed

to the technicians to simulate real acquisition conditions. The use of additional

normalization color elements was avoided as they are unpractical for field image150

acquisition as shown in Johannes et al. (2017).

In order to train and validate the algorithm, all images were accurately

segmented and labeled by expert technicians. Every spot depicting the presence
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of a disease was accurately segmented and the image region containing the image

leaf was also segmented, as depicted in Figure 2.155

Figure 2: Manual segmentation process. Left) Original image, Middle) Leaf region, Right)

Segmented rust hot-spots

Each image in the dataset presenting a disease was also labeled according

to the development stage of each disease. In this way, for each disease, each

leaf was categorized as early or medium-late accordingly. This information al-

lows measuring the performance metrics of the algorithm under different disease

stages.160

3.2. Validation in real conditions

The different algorithm configurations were also tested over a set of images

acquired in open air and real conditions by BASF technicians by using the

developed application 3 in the field. This set of images was composed of 72

images containing Septoria, 54 images containing Rust and a control set of 27165

healthy images, and they define the (Wheat 2016 Wild) dataset.

3.3. Developed mobile application

An auxiliary application was developed to allow image acquisition and au-

tomatic picture recognition, as shown in 3. The application works on An-

droid, iOS and Windows Phones. It is able to provide fast disease identification170

(ts < 5s) and it also stores the acquired images on the server side so that a

posterior statistical analysis can be performed. An application continuous beta

test was already performed to get feedback from the user behavior and their ac-

ceptance of the technology. This development is for and in agronomical practice,

which involves continuous and agile development of user oriented products.175
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Figure 3: Developed mobile application for disease identification

4. Adapting Deep Convolutional Neural Networks for Early-Stage

Disease Detection

Common deep learning-based architectures for image classification have been

designed and extensively tested to advantageously cope with tasks where clas-

sification of an image involves the presence of an specific object on a significant180

portion of the image (e.g. Deng et al. (2009)). Moreover, input images are nor-

mally resized into the input size of the network (sizes typically not larger than

224 pixels) which, in the case of early disease identification, reduces the already

small size of the incipient diseases, making these approaches not appropriate for

the detection of subtle early symptoms.185

Object detection approaches ( Uijlings et al. (2013), Girshick et al. (2014),

Girshick (2015), Ren et al. (2015)) have successfully achieved good performance

on object detection and they can be an appropriate alternative for the disease

9



  

identification problem. However, these networks are especially tailored to the

typical object size of the dataset over which they are trained and are also nega-190

tively affected by datasets where the object size present a large variance whose

accuracy drops especially for small objects ( Herranz et al. (2016)). Moreover,

Eggert et al. (2017) have recently demonstrated that the R-CNN topology has

to be adapted to the targeted object size and that no single topology is able to

cope with objects presenting a high size variance. The large variance of both195

appearance and scale of each of the targeted diseases where the small scattered

rust pustules compete with the big continuous clusters of Septoria precluded

the use of an object detection approach.

Based on the previous considerations, we propose the adaption of a clas-

sification deep neural network architecture family that has proven itself very200

competitive: Deep Residual neural networks, presented in He et al. (2016a) and

He et al. (2016b), which reformulated the transformation performed by regular

convolutional network layers as learning a residual that gets added to an iden-

tity mapping, thus allowing deeper architectures that ultimately enabled wining

the ILSVRC 2015 challenge classification task (Russakovsky et al. (2015)).205

This work adapts the aforementioned network topology to deal with simul-

taneous multiple disease detection, and to allow focusing on early diseases even

on cases of very small relative coverage areas, and does so by including the

enhancements detailed on the next paragraphs:

4.1. Image preprocessing and tile extraction210

One of the main issues for early-stage disease detection on deep learning

architectures is that common architectures downsample the input image into

smaller images (e.g. 224×224 in the case of typical Resnets (He et al. (2016a))).

For general purpose image classification tasks, this approach maintains the se-

mantic information present in the image while significantly reducing the number215

of network parameters, thus reducing the number of required training images.

In cases where the early disease is characterized by small and subtle spots (such

as in Drechslera triciti-repentis or Septoria triciti), this approach can reduce or

10



  

even make the disease vanish from the image, making it impossible to detect.

To mitigate this effect, three different alternatives are tested to extract the tile220

candidates that will feed the neural network.

4.1.1. Full image resize

As a baseline alternative, the high resolution image is resized into the net-

work input size following common approaches for deep learning architectures

such as Krizhevsky et al. (2012a); He et al. (2016a). In this approach, the whole225

image is downsampled regardless of the size of the leaf within the image.

4.1.2. Leaf mask crop

In this approach, the image is cropped to the bounding rectangle that con-

tains the leaf element on the image. The extent of the leaf element is provided

by expert annotation at training stage and by the end user at test time, by using230

the leaf mask selection approach proposed in Johannes et al. (2017). Semantic

segmentation of leaves has also been tested with good results, but it is out of

the scope of this work. Intuitively, cropping the image into the leaf bounding

rectangle diminishes the detail loss by discarding non-relevant areas of the orig-

inal image before downsampling, specially for early-stage diseases. Details can235

be appreciated in figure 4.

4.1.3. Superpixel based tile extraction

As an alternative, in order to avoid a significant downscaling of the por-

tion of the image that might contain potential diseases (i.e. the leaf mask),

which could degrade the visual features of the early-stage diseases, we propose240

to segment the input image in a group of roughly homogeneous regions called

superpixels. This segmentation pipeline relies on the Simple Linear Iterative

Clustering (SLIC) superpixel extraction algorithm from Achanta et al. (2012).

SLIC adapts a k-means clustering-based approach in the CIELAB color space

while keeping a configurable spatial coherence so as to enforce a certain com-245

pactness. All superpixels not intersecting with the leaf mask are discarded, while

the rest are independently resized to the neural network’s input size. In order
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Figure 4: Sample images from the dataset after leaf mask-based cropping

to enforce spatial compactness, the algorithm’s main configurable parameters

were set to a value of compactness = 200.0 (which defines the desired operation

point in the trade-off between color and spatial proximity) and a sigma = 1.0250

(which sets the standard deviation of a Gaussian kernel that smooths the image

as a preprocessing step before segmentation). The number of segments was cal-

culated to obtain -on average- a superpixel area equal to that of the network’s

input image: num segments = M∗N
L2 , where M and N correspond to the width

and height of the original image and L corresponds to the network input size255

(assuming it is square). Each extracted tile is confronted against the corre-

sponding ground-truth segmented disease Hot-Spot image so as to check which

diseases are present in it, and labeled accordingly.

4.2. Artificial Data Augmentation

In order to make the trained model invariant to natural perturbations such260

as illumination changes, perspective variability and position changes, among

others, deep learning based approaches rely on the availability of a very large

amount of data presenting high variability, so that robust and unbiased model

parameters can be learned. However, the size of the dataset needed to cover

such variability precludes its use for common realistic applications. With the265
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Figure 5: Superpixel boundaries extracted over images from the training dataset by applying

SLIC

aim of increasing the training set size and its variability, image augmentation

techniques are frequently applied. Although recent models suggest that even

realistic illumination color cast variations can be achieved through proper illu-

minant estimation techniques (Galdran et al. (2017)), typically just basic ge-

ometrical transformations are applied (Simonyan and Zisserman (2014)), such270

as flipping, translations or rotations, but could include any other kind of affine

and non-linear transformations, as long as the ground truth label does not get

modified by the change (for the case of semantic segmentation-like annotations,

these should also be transformed in parallel). At our algorithm’s training stage,

each image is geometrically modified with a random transformation, which as-275

sures better variability on the training images by acting as a regularizer. In

order to avoid class imbalance during training (Japkowicz and Stephen (2002)),

each class is also uniformly sampled from the dataset, thus yielding an equal

percentage of each disease class during training.

Our preliminary studies showed that, although there was a high variety of280

image backgrounds on the training dataset, the algorithm failed when elements

with similar appearance to that of the disease appeared in the background of the

image. In order to minimize this problem, a percentage of the image samples

drawn during the training stage were sub-imposed with a random background

image by previously extracting the portion of the image corresponding to the285

leaf mask as depicted in 6. These random images were extracted from the Ima-

genet ILSVRC15 dataset (Russakovsky et al. (2015)). This intuitively increases
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background variability, helping the model to distinguish among a higher set of

backgrounds.

Figure 6: Full resized images with the sub-imposed artificial background

4.3. Network topology290

A Deep Residual Neural Network with 50 layers and 224× 224 input image

size was selected for our classification task, given the required trade-off between

network capacity-complexity and training set size. The architecture is based on

that presented in He et al. (2016a) as Resnet-50. Our topology shares with He

et al. (2016a) the inclusion of a batch normalization (Ioffe and Szegedy (2015))295

and a Rectifier Linear Unit (ReLU) layer after each convolution operation. It

also preserves the same combination of different kind of building blocks: a

first type, named identity block, comprises two 1 × 1 convolutions with a 3 × 3

convolution in between and a direct skip connection bypassing input and output

; meanwhile, a second kind named bottleneck residual building block adds a 1×1300

convolution in the skip connection (converting it into a projection shortcut) in

order to enable a change in dimensions as depicted in 7. As described in He et al.

(2016a,b), the use of skip connections allows for a reformulation of convolutional
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operations as learning residual functions referenced to an identity mapping,

which enables the creation of deeper networks that can learn more complex305

mappings without the degradation problem arising in regular, single-branch

networks.

Figure 7: Resnet bottleneck residual building block

We present two modifications to this architecture: the first 7 × 7 convolu-

tional layer and 3×3 max-pooling layer from He et al. (2016a) were substituted

by two consecutive 3×3 convolutions, both followed by 3×3 max-pooling opera-310

tions. The rationale behind that of obtaining a better fine-grained visual feature

extraction that could enable an improved classification of early-stage diseases.

In addition, the last layer of the network, which consisted of a dense layer with

a softmax activation function with an output size of 1056 elements during the

pretraining (see 8), was substituted by a dense layer with an output size equal315

to the number of the disease classes, followed by a sigmoid activation. The use

of the sigmoid function instead of the softmax enables the detection of multiple

diseases on the same leaf, while at the same time allowing weight sharing for

common disease feature description.

15



  

Figure 8: Used Resnet 50 architecture

4.4. Training pipeline320

The training workflow comprises a three-stage learning process. In the first

stage (pretraining), we extend the Imagenet dataset (Russakovsky et al. (2015))

16



  

by including images of additional plant species classes for a total of 1056 classes,

and modify the original Resnet50 architecture accordingly, by substituting the

output fully connected layer (originally with 1000 output units and a softmax325

activation) by one with 1056 output units. This network is then trained from

scratch (i.e. initialized with pseudo-random weights) until convergence on the

task of 1056 class classification.

The second stage corresponds to a constrained fine-tuning one, in which we

replace the aforementioned dense layer of 1056 outputs and softmax activation330

by a dense layer of three output units (one per disease) and a sigmoid activation.

The predictive task is now the final one, i.e. that of predicting whether each

of the diseases is present in the input image, and all the layers, except for the

last dense one, are initialized with the weights learned in the first stage and are

kept frozen. The last dense layer is randomly initialized, and it is the only one335

allowed to modify its weights during learning.

The final training stage completes the fine-tuning by starting from the weights

resulting from the previous stage and unfreezing all the layers, thus yielding a

free, unconstrained training.

During the training stage, each image from the training dataset is prepro-340

cessed by the tile extraction module by one of the three methods proposed in 4.1.

As a result, a tile (or group of tiles in case of the superpixel-based segmenta-

tion) is obtained for each image and the label of each of the tiles is derived from

the manually segmented images in the dataset. The process is shown in Fig-

ure 9. The obtained tiles are drawn assuring equal distribution among all the345

disease classes and the healthy plant class. In the case of The fully-convolutional

network the obtained tiles

Each drawn tile is geometrically augmented by means of random linear ge-

ometric distortions such as zoom, perspective, rotation and displacement, and

the previously described artificial background is sub-imposed on a fraction of350

them to increase background variability. The obtained image, paired with the

class memberships, is used to train the convolutional neural network model.

The network was trained using Stochastic Gradient Descent (SGD) opti-
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mization with an initial learning rate of 10−4, a learning rate decay of 10−6

and a momentum of 0.9. The weights of the last layer of the network were first355

trained during 100 epochs while keeping the rest frozen, and afterwards the full

network was trained.

CNN  
model train 

x 

RGB Image 

Ground-Truth Image 

Superpixel based 
clustering 

Tile  
cropping 

Image  
augmentation 

Artificial 
background 

y 

Figure 9: Training process pipeline. Each of the three independent flows refer to the one of the

methods proposed in 4.1; from top to down: full image resize, leaf mask crop and superpixel

based tile extraction

4.5. Fully Convolutional Network

Fully convolutional networks (FCN, Lin et al. (2013), Long et al. (2015))360

have proven successful in reducing the potential overfitting that could arise

from the use of fully connected layers in the last steps of traditional network

architectures (Krizhevsky et al. (2012b), Simonyan and Zisserman (2014)), with

the additional benefit of enabling inference over images of different sizes. The

FCN approach substitutes such dense layers by convolutional layers with a 1×1365
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kernel, where the number of filters for the last layer equals the number of classes

on the classification task. This allows for the generation of one feature map for

each corresponding category on the task directly over the full-size image. For the

analyzed classification task, this feature map is merged through a global average

pooling layer. In this work we compare our proposed approaches against a fully370

convolutional Resnet50 network, where the final convolutional layer substitutes

the densely connected layer. A final global average pooling layer integrates the

responses over the whole image. The proposed network has been trained both

patch-wise and image-wise and tested on the fully sized image as proposed by

Long et al. (2015).375

5. Deployment Pipeline

The version of the algorithm deployed on-line is based on a roughly simi-

lar but simplified version of the training pipeline. The leaf-mask is estimated

by an estimation module from a rough input provided by the user using the

method described in Johannes et al. (2017), which relies on Chan and Vese’s380

active contours-based segmentation algorithm (Chan and Vese (2001)). The es-

timated leaf-mask, together with the original RGB image, are used to feed the

tile extraction module configured with one of the aforementioned alternatives

(see 4.1). The extracted tiles are then passed to the augmentation module,

which automatically generates a pre-configured number of augmented images to385

be analyzed by the network model (trained as described in 4.4), with all of its

outcomes being then averaged (see Figure 10). This augmentation and averaging

process acts as a regularizer, by somehow mimicking the posterior probability

distribution over some of the possible variations that a certain input image may

present when being captured. The probability estimations from the different390

tiles are integrated on a final classifier that takes the average probability from

the tiles and returns a final decision and an associated confidence.
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Figure 10: Deployment framework. Left) RGB Image, Middle) Superpixel clustered image,

Right) Leaf region tiles augmentation. The test-time augmentation yields a probability density

function that is used to obtain a more robust classification estimate, as well as the associated

confidence.

6. Results

The different configurations of the algorithm were first validated using the

wheat dataset described in Section 3.1. This validation was then confirmed by395

performing in-situ testing campaign in real field conditions (Section 3.2).

6.1. Validation set results

A training database was created with the images from the W−2014, W−2015

and W−2016 datasets defined in Table 1. In order to avoid bias, the dataset was

divided into 80% of the images for training, another 10% for validation and a400

final 10% for the testing set. The picture acquisition date was used as set division

criterion, by not allowing pictures taken on the same day to be selected as part

of different sets. The Area under the Receiver Operating Characteristic (ROC)
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Curve (AuC) was selected as the most suitable algorithm performance metric,

in order to account for the class imbalance present in the dataset (in such cases,405

the use of accuracy is discouraged). The AuC for a binary classification problem

is constructed by first sorting all the samples by the disease presence probability

predicted by the model for each of them. The classification threshold value is

then moved all the way from 0 to 1, and the result at each threshold value is

mapped into the plot representing False Positive (x-axis) vs. True Positive rates410

(y-axis), and measuring the resulting area (in the [0, 1] range, higher is better)

under such curve as explained in Johannes et al. (2017). Computed values of

sensitivity, specificity and balanced accuracy (BAC, as defined in eq. 1) for the

different diseases are also provided for the threshold value that maximizes the

validation set accuracy.415

BAC =
Sensitivity + Specificity

2
(1)

Table 2 shows the obtained results. They clearly show that the use of the full

image for identification performed worse than when using any of the proposed

cropping techniques. Both superpixel-based cropping or leaf mask cropping in-

creases the obtained AuC and balanced accuracy with respect to not cropping

at all. Overall, the superpixel clustering approach works better for small spot420

diseases, such as Tan Spot (Drechslera triciti-repentis) and Rust (Puccinia stri-

iformis & Puccinia recondita), and a bit worse for largely spread diseases such

as Septoria (Septoria triciti) . When using the artificial background augmenta-

tion approach, the trained network’s AuC increases in all cases and are depicted

in Figure 11. In the specific case of leaf-mask crop-based tile extraction, the use425

of artificial background increases the network performance to supersede the one

obtained with the superpixel approach.

6.1.1. Evaluation of Fully Convolutional Networks

The fully convolutional network described in Section 4.5 was trained both

over the full-image and over randomly selected patches extracted from the full430

image as proposed by Long et al. (2015), and the obtained models were applied
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  Table 2: Validation results with Resnet50 topology

Network Topology Tile extraction Artificial Background Disease AuC Sens Spec BAC

Resnet50 Full False Septoria 0.93 0.82 0.89 0.88

Resnet50 Full False Rust 0.94 0.91 0.89 0.90

Resnet50 Full False Tan Spot 0.82 0.68 0.84 0.76

Resnet50 Leafmask False Septoria 0.94 0.88 0.88 0.88

Resnet50 Leafmask False Rust 0.95 0.87 0.93 0.90

Resnet50 Leafmask False Tan Spot 0.90 0.79 0.87 0.83

Resnet50 Superpixel False Septoria 0.92 0.88 0.84 0.86

Resnet50 Superpixel False Rust 0.97 0.87 0.96 0.92

Resnet50 Superpixel False Tan Spot 0.86 0.80 0.80 0.80

Resnet50 Full True Septoria 0.93 0.91 0.80 0.86

Resnet50 Full True Rust 0.92 0.88 0.84 0.86

Resnet50 Full True Tan Spot 0.84 0.82 0.73 0.78

Resnet50 Leafmask True Septoria 0.94 0.87 0.89 0.88

Resnet50 Leafmask True Rust 0.96 0.92 0.90 0.91

Resnet50 Leafmask True Tan Spot 0.88 0.81 0.84 0.83

Resnet50 Superpixel True Septoria 0.92 0.88 0.88 0.88

Resnet50 Superpixel True Rust 0.97 0.87 0.96 0.93

Resnet50 Superpixel True Tan Spot 0.85 0.80 0.81 0.80
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Figure 11: AuC results on superpixel and artificial background. Left)Tan Spot, Middle)

Septoria, Right) Rust

to the full image. Results depicted in Table 3 show that the use of the full-sized

images for training yields too low AuC values and that the use of a random crop-

based approach for training provides better results. Both results are, however,

far from the ones obtained by the other proposed methods.435

6.1.2. Evaluation of online augmentation

We also measured the effect of the test-time augmentation averaging for

the deployment pipeline described in Section 5 considering 1, 3, 5 and 7 aver-

aged images. Our results (see Table 4) indicate that the online augmentation

increases overall AuC by 2%.440
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Table 3: Validation results with Resnet50fc topology

Network Topology Tile extraction Artificial Background Disease AuC Sens Spec BAC

Resnet50fc image-wise True Septoria 0.58 0.75 0.39 0.57

Resnet50fc image-wise True Rust 0.69 0.56 0.74 0.65

Resnet50fc image-wise True Tan Spot 0.59 0.33 0.85 0.59

Resnet50fc patch-wise True Septoria 0.63 0.45 0.63 0.66

Resnet50fc patch-wise True Rust 0.83 0.72 0.86 0.79

Resnet50fc patch-wise True Tan Spot 0.75 0.56 0.81 0.69

Table 4: Performance improvement with online augmentation

Number of AuC AuC AuC AuC

augmented images Septoria Rust Tan Spot Average

1 0.94 0.96 0.88 0.92

3 0.95 0.97 0.89 0.94

5 0.95 0.97 0.89 0.94

7 0.95 0.96 0.89 0.93
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6.1.3. Evaluation of early-stage disease classification

In order to quantify the performance of the algorithm on detecting early-

stage diseases, the validation and test datasets were divided according to the

degree of development of each disease. In this way, subsets corresponding to

early and medium-late stages were created. AuC, sensitivity and specificity of445

these datasets were also calculated so as to assess the influence of the disease

evolution on the ability of the model to accurately predict its presence or ab-

sence. Table 5 shows the results obtained for the early-stage disease detection

scenario for the Resnet50 topology under the different considered configurations,

while Table 6 does so for the medium-late state case.450

Table 5: Validation results with Resnet50 topology in early diseases

Network Topology Tile extraction Artificial Background Disease AuC Sens Spec BAC

Resnet50 Full False Septoria 0.91 0.72 0.92 0.82

Resnet50 Full False Rust 0.88 0.61 0.93 0.77

Resnet50 Full False Tan Spot 0.82 0.64 0.85 0.75

Resnet50 Leafmask False Septoria 0.94 0.86 0.87 0.87

Resnet50 Leafmask False Rust 0.83 0.65 0.85 0.75

Resnet50 Leafmask False Tan Spot 0.75 0.74 0.69 0.71

Resnet50 Superpixel False Septoria 0.93 0.73 0.93 0.83

Resnet50 Superpixel False Rust 0.96 0.87 0.94 0.90

Resnet50 Superpixel False Tan Spot 0.83 0.72 0.80 0.76

Resnet50 Full True Septoria 0.94 0.83 0.91 0.87

Resnet50 Full True Rust 0.89 0.73 0.89 0.81

Resnet50 Full True Tan Spot 0.86 0.75 0.81 0.78

Resnet50 Leafmask True Septoria 0.96 0.93 0.92 0.92

Resnet50 Leafmask True Rust 0.93 0.81 0.91 0.86

Resnet50 Leafmask True Tan Spot 0.87 0.76 0.86 0.81

Resnet50 Superpixel True Septoria 0.94 0.87 0.90 0.88

Resnet50 Superpixel True Rust 0.96 0.87 0.93 0.90

Resnet50 Superpixel True Tan Spot 0.82 0.68 0.84 0.76
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Table 6: Validation results with Resnet50 topology in medium-late diseases

Network Topology Tile extraction Artificial Background Disease AuC Sens Spec BAC

Resnet50 Full False Septoria 0.92 0.79 0.88 0.84

Resnet50 Full False Rust 0.89 0.77 0.95 0.86

Resnet50 Full False Tan Spot 0.82 0.65 0.87 0.76

Resnet50 Leafmask False Septoria 0.93 0.85 0.85 0.85

Resnet50 Leafmask False Rust 0.90 0.82 0.87 0.84

Resnet50 Leafmask False Tan Spot 0.72 0.69 0.68 0.69

Resnet50 Superpixel False Septoria 0.96 0.92 0.91 0.92

Resnet50 Superpixel False Rust 0.97 0.91 0.95 0.93

Resnet50 Superpixel False Tan Spot 0.85 0.74 0.83 0.78

Resnet50 Full True Septoria 0.94 0.86 0.87 0.87

Resnet50 Full True Rust 0.93 0.81 0.90 0.86

Resnet50 Full True Tan Spot 0.88 0.78 0.83 0.81

Resnet50 Leafmask True Septoria 0.95 0.89 0.89 0.89

Resnet50 Leafmask True Rust 0.96 0.87 0.92 0.90

Resnet50 Leafmask True Tan Spot 0.85 0.74 0.87 0.80

Resnet50 Superpixel True Septoria 0.96 0.90 0.90 0.90

Resnet50 Superpixel True Rust 0.97 0.91 0.94 0.93

Resnet50 Superpixel True Tan Spot 0.83 0.72 0.87 0.80

It can be appreciated that the use of a common deep learning approach

does not improve the results obtained from Johannes et al. (2017), obtaining an

average balanced accuracy (BAC) of 0.78. Both the superpixel approach and

the leaf mask resize approach superseded the use of the full image. It can also

be appreciated that the use of the leaf mask resizing approach does not improve455

the performance obtained by the full image approach and it was necessary to

include the artificial background based augmentation during training, resulting

into higher performance values both in AuC and in balanced accuracy.
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6.2. System testing under real conditions

The different algorithm configurations were then tested over a set of images460

acquired in real conditions by BASF technicians by using the developed ap-

plication (3). This set of images comprised 77 images containing Septoria, 54

images containing rust and a control set of 27 healthy images. Diseases were in

advanced stage as pictures were acquired in late season. Values for specificity

and sensitivity were calculated. The balanced accuracy (average sensitivity and465

specificity) was averaged for the different diseases and provided as a final per-

formance metric.

Table 7: Testing results on images taken under real field conditions

Network Topology Tile extraction Artificial Background Disease Sens Spec BAC

Resnet50 Full False Septoria 0.73 1.00 0.86

Resnet50 Full False Rust 0.94 0.98 0.96

Resnet50 Leafmask False Septoria 0.93 0.73 0.83

Resnet50 Leafmask False Rust 1.00 0.97 0.98

Resnet50 Superpixel False Septoria 0.98 0.78 0.88

Resnet50 Superpixel False Rust 0.98 0.98 0.98

Resnet50 Full True Septoria 0.73 1.00 0.87

Resnet50 Full True Rust 0.94 0.98 0.96

Resnet50 Leafmask True Septoria 0.80 0.98 0.89

Resnet50 Leafmask True Rust 1.00 0.92 0.96

Resnet50 Superpixel True Septoria 0.94 0.96 0.96

Resnet50 Superpixel True Rust 1.0 0.96 0.98

As it can be seen in Table 7, the obtained results are in consonance with the

validation tests from 6.1. The use of the full image with a simple unmodified

network produced lower balanced accuracy, specially for Septoria triciti. This470

can be also corroborated in other studies when applying the trained models to

images not acquired under same conditions as the training dataset (Mohanty

et al. (2016)). When applying the artificial background trained model over
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the leaf mask crop approach, balanced accuracy values increase up to 0.96 for

rust (Puccinia striiformis & Puccinia recondita) and 0.89 for Septoria triciti.475

The superpixel-guided clustering-based technique combined with artificial back-

ground training obtains the best results, with a balanced sensitivity of 0.98 for

rust and a 0.96 for Septoria triciti. These results are significantly superior to

those obtained by using classical computer vision techniques and reported in Jo-

hannes et al. (2017), where balanced accuracies were 0.78 for Septoria triciti and480

0.79 for rust.

6.3. Deployment

The algorithm was deployed under TensorFlow library as a scalable service

into a Docker image with TCP communication capabilities that runs on server

side with no GPU requirements. These services can be deployed in a distributed485

way in order to balance load requirements. The average processing time of the

algorithm was 0.9 (std = 0.43) seconds for the leaf mask resizing approach and

1.9 (std = 0.62) seconds for the superpixel-based approach. This algorithm is

twice as fast as the speeds reported at Johannes et al. (2017).

7. Conclusions490

In this work we presented new developments for the automatic multi-disease

identification algorithm presented in Johannes et al. (2017) for field acquisition

conditions. We enhanced the results from Johannes et al. (2017) by making

use of a Residual Neural Network that included several improvements on the

augmentation scheme and on the tile cropping. The use of these enhancements495

support early disease detection while maintaining high specificities. The algo-

rithm was validated over three different diseases: Septoria (Septoria triciti), Tan

Spot (Drechslera triciti-repentis) and Rust (Puccinia striiformis & Puccinia re-

condita) on wheat images, and it has been deployed on a real smart-phone

application and validated under real field conditions as well.500

Observed results on real conditions testing show that Balanced Accuracy

values increased from 0.78 on the classical approach to an average BAC of
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0.84 when using a Residual Neural Network without any further improvement.

However, this caused low specificities that could not assure high reliability on

the detection in real case scenario, specially on early diseases, where the average505

BAC was 0.78. The improvements on the confidence estimation, the super

pixel segmentation approach and the artificial background training increased

the performance of the algorithm up to an average Balanced Accuracy of 0.87

both for early and late diseases. The use of the online image augmentation

increases these AuCs by an additional 2% We also proved, for the first time,510

that a deep learning application can work with good performance on real natural

conditions pilots for plant disease identification and cope with multiple diseases

obtaining Balanced Accuracies greater than 0.96 in Germany.

As next steps, a large scale pilot is being held in Germany at the moment

to further validate the obtained results. The proposed algorithm will also be515

extended to different countries, diseases and crops to analyze the algorithm’s

generalization power.
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superpixels compared to state-of-the-art superpixel methods. IEEE transac-520

tions on pattern analysis and machine intelligence 34, 2274–2282.

Arajo, T., Aresta, G., Castro, E., Rouco, J., Aguiar, P., Eloy, C.,

Polnia, A., Campilho, A., 2017. Classification of breast cancer his-

tology images using Convolutional Neural Networks. PLOS ONE 12,

e0177544. URL: http://journals.plos.org/plosone/article?id=10.525

1371/journal.pone.0177544, doi:10.1371/journal.pone.0177544.

Badrinarayanan, V., Kendall, A., Cipolla, R., 2015. SegNet: A Deep

Convolutional Encoder-Decoder Architecture for Image Segmentation.

arXiv:1511.00561 [cs] URL: http://arxiv.org/abs/1511.00561. arXiv:

1511.00561.530

29

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0177544
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0177544
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0177544
http://dx.doi.org/10.1371/journal.pone.0177544
http://arxiv.org/abs/1511.00561


  

Bauriegel, E., Herppich, W.B., 2014. Hyperspectral and chlorophyll fluorescence

imaging for early detection of plant diseases, with special reference to fusarium

spec. infections on wheat. Agriculture 4, 32–57.

Brent, K.J., Hollomon, D.W., 1995. Fungicide resistance in crop pathogens:

How can it be managed? Citeseer.535

Chan, T.F., Vese, L.A., 2001. Active contours without edges. IEEE Transactions

on image processing 10, 266–277.

Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L., 2009. ImageNet:

A large-scale hierarchical image database, in: IEEE Conference on Computer

Vision and Pattern Recognition, 2009. CVPR 2009, pp. 248–255. doi:10.540

1109/CVPR.2009.5206848.

Di Cicco, M., Potena, C., Grisetti, G., Pretto, A., 2016. Automatic Model Based

Dataset Generation for Fast and Accurate Crop and Weeds Detection. arXiv

preprint arXiv:1612.03019 URL: https://arxiv.org/abs/1612.03019. bib-

tex: di2016automatic.545

Eggert, C., Brehm, S., Winschel, A., Zecha, D., Lienhart, R., 2017. A closer look:

Small object detection in faster r-cnn, in: Multimedia and Expo (ICME), 2017

IEEE International Conference on, IEEE. pp. 421–426.

Esteva, A., Kuprel, B., Novoa, R.A., Ko, J., Swetter, S.M., Blau,

H.M., Thrun, S., 2017. Dermatologist-level classification of skin550

cancer with deep neural networks. Nature advance online publica-

tion. URL: http://www.nature.com/nature/journal/vaop/ncurrent/

full/nature21056.html, doi:10.1038/nature21056.

Galdran, A., Alvarez-Gila, A., Meyer, M.I., Saratxaga, C.L., Araujo, T., Gar-

rote, E., Aresta, G., Costa, P., Mendonça, A.M., Campilho, A.J.C., 2017.555

Data-driven color augmentation techniques for deep skin image analysis.

CoRR abs/1703.03702. URL: http://arxiv.org/abs/1703.03702.

30

http://dx.doi.org/10.1109/CVPR.2009.5206848
http://dx.doi.org/10.1109/CVPR.2009.5206848
http://dx.doi.org/10.1109/CVPR.2009.5206848
https://arxiv.org/abs/1612.03019
http://www.nature.com/nature/journal/vaop/ncurrent/full/nature21056.html
http://www.nature.com/nature/journal/vaop/ncurrent/full/nature21056.html
http://www.nature.com/nature/journal/vaop/ncurrent/full/nature21056.html
http://dx.doi.org/10.1038/nature21056
http://arxiv.org/abs/1703.03702


  

Gandhi, D., Pinto, L., Gupta, A., 2017. Learning to Fly by Crash-

ing. arXiv:1704.05588 [cs] URL: http://arxiv.org/abs/1704.05588. arXiv:

1704.05588.560

Girshick, R., 2015. Fast r-cnn. arXiv preprint arXiv:1504.08083 .

Girshick, R., Donahue, J., Darrell, T., Malik, J., 2014. Rich feature hierarchies

for accurate object detection and semantic segmentation, in: Proceedings of

the IEEE conference on computer vision and pattern recognition, pp. 580–587.

Hanus, H., 2008. Handbuch des Pflanzenbaues. 2. Getreide und Futtergräser:565
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Kübler, E., 1994. Weizenanbau: 72 Tabellen. Ulmer.

32

http://videolectures.net/icml2015_ioffe_batch_normalization/
http://www.sciencedirect.com/science/article/pii/S016816991631050X
http://www.sciencedirect.com/science/article/pii/S016816991631050X
http://www.sciencedirect.com/science/article/pii/S016816991631050X
http://dx.doi.org/https://doi.org/10.1016/j.compag.2017.04.013
http://dx.doi.org/https://doi.org/10.1016/j.compag.2017.04.013
http://dx.doi.org/https://doi.org/10.1016/j.compag.2017.04.013
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf


  

Kuhlmann, F., Brodersen, C., 2001. Information technology and farm manage-

ment: developments and perspectives. Computers and electronics in agricul-

ture 30, 71–83.

Li, K., Malik, J., 2016. Amodal Instance Segmentation, in: Computer Vision615

ECCV 2016, Springer, Cham. pp. 677–693. URL: http://link.springer.

com/chapter/10.1007/978-3-319-46475-6_42. dOI: 10.1007/978-3-319-

46475-6 42.

Lin, M., Chen, Q., Yan, S., 2013. Network in network. CoRR abs/1312.4400.

URL: http://arxiv.org/abs/1312.4400, arXiv:1312.4400.620

Litjens, G., Snchez, C.I., Timofeeva, N., Hermsen, M., Nagtegaal, I., Kovacs,

I., Kaa, C.H.v.d., Bult, P., Ginneken, B.v., Laak, J.v.d., 2016. Deep learning

as a tool for increased accuracy and efficiency of histopathological diagno-

sis. Scientific Reports 6, 26286. URL: http://www.nature.com/srep/2016/

160523/srep26286/full/srep26286.html, doi:10.1038/srep26286.625

Long, J., Shelhamer, E., Darrell, T., 2015. Fully convolutional networks for

semantic segmentation, in: Proceedings of the IEEE conference on computer

vision and pattern recognition, pp. 3431–3440.

Mahlein, A.K., Oerke, E.C., Steiner, U., Dehne, H.W., 2012. Recent advances

in sensing plant diseases for precision crop protection. European Journal of630

Plant Pathology 133, 197–209.

Martinelli, F., Scalenghe, R., Davino, S., Panno, S., Scuderi, G., Ruisi, P., Villa,

P., Stroppiana, D., Boschetti, M., Goulart, L.R., et al., 2015. Advanced meth-

ods of plant disease detection. a review. Agronomy for Sustainable Develop-

ment 35, 1–25.635

Masci, J., Meier, U., Ciresan, D., Schmidhuber, J., Fricout, G., 2012. Steel

defect classification with Max-Pooling Convolutional Neural Networks, in:

The 2012 International Joint Conference on Neural Networks (IJCNN), pp.

1–6. doi:10.1109/IJCNN.2012.6252468.

33

http://link.springer.com/chapter/10.1007/978-3-319-46475-6_42
http://link.springer.com/chapter/10.1007/978-3-319-46475-6_42
http://link.springer.com/chapter/10.1007/978-3-319-46475-6_42
http://arxiv.org/abs/1312.4400
http://arxiv.org/abs/1312.4400
http://www.nature.com/srep/2016/160523/srep26286/full/srep26286.html
http://www.nature.com/srep/2016/160523/srep26286/full/srep26286.html
http://www.nature.com/srep/2016/160523/srep26286/full/srep26286.html
http://dx.doi.org/10.1038/srep26286
http://dx.doi.org/10.1109/IJCNN.2012.6252468


  

McCown, R.L., 2002. Locating agricultural decision support systems in the640

troubled past and socio-technical complexity of models for management. Agri-

cultural systems 74, 11–25.
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Highlights 

• Automatic Plant disease diagnosis for early disease symptoms 

• Novel image processing algorithm in combination with machine learning inference methods 

• A performance testing on wheat was performed with 7 mobile devices over a period of 4 

seasons. 

• Obtained results reveal AuC metrics higher than 0.80 for all the analyzed diseases. AuC 

measures the area under the ROC (Receiver Operating Characteristic) curve that measures 

the discriminative power of the classifier.  

 


