
Early Safety Assessment of Automotive Systems Using
Sabotage Simulation-Based Fault Injection Framework

Garazi Juez(✉), Estíbaliz Amparan, Ray Lattarulo, Alejandra Ruíz, Joshué Pérez,
and Huáscar Espinoza

TECNALIA Research & Innovation, Derio, Spain
{garazi.juez,estibaliz.amparan,rayalejandro.lattarulo,

alejandra.ruiz,joshue.perez,huascar.espinoza}@tecnalia.com

Abstract. As road vehicles increase their autonomy and the driver reduces his
role in the control loop, novel challenges on dependability assessment arise.
Model-based design combined with a simulation-based fault injection technique
and a virtual vehicle poses as a promising solution for an early safety assessment
of automotive systems. To start with, the design, where no safety was considered,
is stimulated with a set of fault injection simulations (fault forecasting). By doing
so, safety strategies can be evaluated during early development phases estimating
the relationship of an individual failure to the degree of misbehaviour on vehicle
level. After having decided the most suitable safety concept, a second set of fault
injection experiments is used to perform an early safety validation of the chosen
architecture. This double-step process avoids late redesigns, leading to significant
cost and time savings. This paper presents a simulation-based fault injection
approach aimed at finding acceptable safety properties for model-based design of
automotive systems. We focus on instrumenting the use of this technique to obtain
fault effects and the maximum response time of a system before a hazardous event
occurs. Through these tangible outcomes, safety concepts and mechanisms can
be more accurately dimensioned. In this work, a prototype tool called Sabotage
has been developed to set up, configure, execute and analyse the simulation
results. The feasibility of this method is demonstrated by applying it to a Lateral
Control system.

Keywords: Fault Injection · Early safety assessment · Vehicle dynamics model

1 Introduction

Automated driving exhibits increasingly complex dependability challenges as the driver
reduces his role in the control loop, and the vehicle must operate under exceptional
situations, e.g. dealing with sensor noise. Fault Injection (FI) has been recognised as a
potentially powerful technique for the safety assessment and corner-case validation of
fault-tolerance mechanisms in manual and automated driving systems [1]. The major
aim of performing FI is not to validate functionality, but rather to test the fault tolerance
or probe how robust the vehicle is or their components are to arbitrary faults. The ISO
26262 standard [2] notably recommends its use across the validation and verification
phases of the V-Cycle development process.

© Springer International Publishing AG 2017
S. Tonetta et al. (Eds.): SAFECOMP 2017, LNCS 10488, pp. 255–269, 2017.
DOI: 10.1007/978-3-319-66266-4_17



Despite the growing use of model-based tools in the design phases, FI is a technique
that has seen little widespread use in early phases [3]. The potential benefits of using FI
during pre-implementation phases of automotive systems range from providing an early
evaluation up to a preliminary validation of safety concepts. In the specific case of
manual driving, this could help determining (human-) controllability and fault tolerant
time interval (FTTI) values in early design phases. FTTI is defined as the time-span in
which a fault can be present in a system before a hazardous event occurs [2]. Concerning
highly automated driving, we believe that FI could be applied for dimensioning moni‐
toring functions by determining a system maximum response time before a hazardous
event occurs.

This paper explores how to use model-based FI to assess safety properties of vehicle
systems and how to augment vehicle simulation with appropriate fault models for safety
determination. To address these concerns, a simulation-based FI framework (Sabotage)
is coupled with the Dynacar vehicle simulator [4]. Dynacar includes a vehicle model
(e.g. dynamics), an environment model (e.g. driving circuit) and pre-defined sensor and
actuator model libraries for e.g. engine, transmission, steering system, and braking
system. The added value of including vehicle and environment models is that the
maximum time before the vehicle dynamics are unsafely affected can be identified. In
other words, it allows quantitatively estimating the relationship of an individual failure
to the degree of misbehaviour on vehicle level.

Our approach has been evaluated on a case study for the model-based design of a
Lateral Control system. We have focused on automatically inserting fault injection
model blocks (saboteurs), which represent failure modes, and forecast maximum system
reaction times based on the critical lateral deviation (maximum lateral error). This value
determines the required level of fault tolerance − e.g. redundancy or graceful degrada‐
tion − without affecting vehicle safety. A good estimation of these values helps engineers
to better define appropriate safety goals and requirements as main output of the safety
concept [5].

The remainder of this paper is structured as follows. Section 2 presents the related
state of the art. Section 3 introduces the Sabotage tool framework and how it can be used
for an early safety assessment. Afterwards, Sect. 4 shows how the aforementioned
method is applied to the Lateral Control case study. Finally, Sect. 5 presents conclusions
and future work.

2 Related Work

Fault injection has been deeply investigated by both academia and industry as surveyed
in [6] and described in [7]. The idea of using simulation-based FI in early design phases
is not that widely spread. For instance, Svenningson [8] investigated the benefits of
applying this technique on Simulink behavioural models, and Vinter et al. [9] developed
a similar approach for the SCADE toolset. Even if failures can be derived, those effects
and FTTI values cannot be estimated on vehicle level since no vehicle dynamics is
considered. The closest to an investigation of simulation-based FI that integrated vehicle

256 G. Juez et al.



dynamics is presented in [10, 11]. Silveira et al. [10] implemented a seamless co-
simulation approach that combines Matlab and CarSim for evaluating the fault impacts
on vehicle stability. Also, Jones et al. [11] introduced a similar co-simulation solution
using Matlab, CarMaker/TruckMaker and CRUISE tools. This work especially supports
the determination of Automotive Safety Integrity Levels (ASIL) during the concept
phase as per ISO 26262. The major drawback of these approaches is that the fault library
and the solution are language dependent and the automation level could be further
developed.

Concerning the use of FI across the range of abstraction levels of ISO 26262, most
of the work has been done as a way of verifying the implemented safety mechanisms or
safety requirements [12]. Only few works have emphasised its usage during early design
phases. Pintard [3] developed guidance for applying FI on both sides of the ISO
26262’s V-Cycle, including system and hardware pre-implementation phases; however,
the aim of the author was not to develop a fault injection framework.

3 Overview of the Simulation-Based Fault Injection Approach

3.1 The Sabotage Tool Framework

Simulation-based fault injection is a technique that uses a series of high-level abstrac‐
tions or models representing the system under study to evaluate and validate its depend‐
ability in early design phases. Thus the system is simulated on the basis of simplified
assumptions to (a) predict its behaviour in the presence of faults, (b) to estimate the
failure coverage and timing of fault tolerant mechanisms, or (c) to explore the effects of
different workloads, i.e. different activation profiles. Applying FI provides remarkable
benefits for designers. On the one hand, fault forecasting is achieved by performing an
evaluation of the system behaviour with respect to fault occurrence or activation. On
the other hand, as tackled in [14], FI is seen as a dynamic testing technique to achieve
fault removal during the development phase of a system (verification, diagnosis, and
correction).

Sabotage is a simulation-based fault injection tool framework based on the well-
known FARM environment model [13]. The FARM model is composed of: (1) the set
of Faults to be injected, (2) the set of Activations exercised during the experiment, (3)
the Readouts to define observers of system behaviour, and (4) the Measures obtained to
evaluate dependability properties. In the rest of this section, we describe the particular‐
ities of the proposed tool framework in light of the FARM constituents.

Figure 1 shows the Sabotage building blocks and the flow of models to perform a
safety assessment during vehicle simulation in early design phases. The tightly-coupled
simulation environment is constituted as follows: the Sabotage framework is used to set
up, configure, run and analyse FI experiments. The Dynacar vehicle simulator [4], inte‐
grated as a Matlab/Simulink system function (S-function), includes models to represent
some vehicle sensors, actuators and dynamics. An S-function is a computer language
description of a Simulink block written in Matlab, C, C++, or Fortran. Besides, Dynacar
provides a graphical user interface where the previously configured operational situa‐
tions are observed. The model of the whole system is completed by including simulation

Early Safety Assessment of Automotive Systems 257



models representing the Electronic Control Unit (ECU) functions (also known as
controller model or control strategies). By co-simulating the three applications we are
able to carry out a closed-loop modelling of the vehicle control system in the presence
of faults.

Fig. 1. Sabotage framework for simulation-based fault injection

The Sabotage framework operates as follows. First, a Workload Generator generates
the functional inputs to be applied to the system model under test (SMUT). All these
models are developed, for instance, using Matlab/Simulink. The Workload Generator
consists of (i) selecting the system model under test, (ii) choosing the operational
scenario from a driving circuit and environment scenario library, and (iii) configuring
fault injection experiments, i.e. creating the fault list and deciding the read-out or obser‐
vation points (signal monitors). Then a Fault Injector (for now implemented as Matlab
code) uses both, the fault list and a fault model library (implemented as C code templates
or XML), to create the saboteurs (S-functions) and generate as many Faulty SMUT as
the designer needs. Once a fault free version of the SMUT (Golden) and at least one
Faulty SMUT are available, the simulation environment is invoked through the Monitor
(the Oracle implemented in Java). The Monitor not only runs experiments under the
pre-configured vehicle scenario, but also compares and analyses the collected data.

Workload Generator. This block is in charge of three main activities: selecting the
SMUT, choosing the most appropriate driving scenario, which represents the operational

258 G. Juez et al.



situation, and configuring fault injection experiments. Safety analysis provides the basis
for specifying the operational situations (i.e. location, road conditions, environment
conditions and the like). After that, the designer selects the vehicle and a driving circuit
scenario that best symbolises those operational situations to be simulated. Dynacar
manages a scenario catalogue that includes up to 150 configurable parameters, thus
enabling the emulation of a wide range of vehicles and driving circuit scenarios. The
fault injection experiments configurator block in Sabotage also addresses the inclusion
of extra readout model blocks (signal monitors) in the target system (SMUT) to facilitate
the logging process of output data.

Moreover, the activity of fault list generation creates a subset of faults that can be
injected in a reasonable time but are still able to provide significant results. Our strategy
to identify a representative fault subset is to use the target system malfunctions or failure
modes, e.g. omission or commission, instead of injecting an exhaustive or random fault
set. The kinds of faults in the subset include permanent, intermittent and transient faults.

Fault Injector. The fault list is used to produce a Faulty SMUT only in terms of repro‐
ducible and prearranged fault models. Fault models are characterised by a type (e.g.
omission, frozen, delay, invert, oscillation or random), target location, injection trig‐
gering (e.g. driving circuit position or time driven), and duration. To create a Faulty
SMUT, the Fault Injector injects an additional saboteur model block per fault entry from
the fault list together with the associated fault models which are coded as templates in
a fault library. Saboteurs are extra components added as part of the model-based design
for the sole purpose of FI experiments. Algorithm 1 depicts a generic fault model for
omission represented by a stuck-at last value.

Require: input, pos,simutime,faultdur; 
1 
2 
3 
4 
5 

If pos== triggerpos then 
 Freeze=input; 
 enable=1; 
While enable==1 && simutime<=faultdur do return freeze; 
return input; 

Monitor. After setting up the FI scenarios and having conceived the required amount
of Faulty SMUT, the Monitor starts the simulation process. It tracks the execution flow
of the Golden and Faulty simulation runs via the readouts collection activity. The
Monitor compares Golden and Faulty SMUT results by the data analysis activity. The
pass/fail criterion of the tests, which was established by the designer as part of Step III
(cf. Fig. 1), is used to compute and finalise the results. This criterion includes different
properties like the maximum acceptable distance from optimal path considering the
vehicle behaviour is acceptable in terms of vehicle dynamics. This way, acceptable
maximum system reaction times are obtained. In brief, we are able to report the corrup‐
tion effects for fault forecasting and fault removal, as described in the next section.

Early Safety Assessment of Automotive Systems 259



3.2 Using Sabotage for an Early Safety Assessment

In this section, we explore a safety assessment process focused on supporting the creation
and an early validation of a safety concept by using Sabotage. Figure 2 shows how the
proposed approach can help to dimension the safety concept and to achieve its early
safety validation. The approach is discussed in the following sequence in which the
proposed safety assessment process is performed.

Fig. 2. Proposed early safety assessment flow by means of Sabotage

Sabotage Phase I: Start System Safety Evaluation. One assumption in this approach
is that we start from existing system models (i.e. vehicle dynamics and system func‐
tions), which did not implement safety mechanisms before. The purpose of the process
approach is to assist when creating the safety concept by including the vehicle dynamics.
By applying this method, fault effects and the maximum response time of the system
before a hazardous event occurs can be obtained. Furthermore, the severity of the
injected failure modes can be quantified in terms of vehicle dynamics effect. Through
these tangible outcomes, safety concepts and mechanisms can be more accurately

260 G. Juez et al.



dimensioned. Before completing any kind of fault injection simulation, the target system
must be defined and its main functions and failure modes (e.g. omission) have to be
stated. Likewise, a preliminary architecture is mandatory in order to know which func‐
tional failure modes could lead to system or vehicle failure and hazards.

By following the approach explained in Sect. 3.1, a first run of fault injection simu‐
lations needs to be configured. For that, the vehicle and the operational situations shall
be specified to select the vehicle and the driving scenarios. Some typical situation
scenarios that must be analysed are for example:

• Location: highway, urban;
• Road conditions: uphill, on a curve;
• Environment conditions: good conditions, heavy rain;
• Traffic situations: fluent;
• Vehicle speed (kph);
• Manoeuvres: parking, overtaking, lane keeping;
• People at risk: driver, passenger, pedestrians.

We foster the idea of complementing traditional safety analysis techniques by
performing fault injection already at the concept phase. Those traditional analysis tech‐
niques include FMEA (Failure Modes and Effect Analysis), FTA (Fault Tree Analysis),
DFA (Dependent Failure Analysis) or Preliminary Hazard Analysis (PHA). All of them
require not only knowing the failure modes but also to have a clear vision of the failure
effect. Yet sometimes those failure effects might not be clearly known in advance. Our
approach aims at deriving potential effects or hazards based on the FI simulation results.
As a starting point of such preliminary analysis, the malfunctions or failure modes are
clearly identified in this process step. As a result of this activity, a fault list can be created
by the Sabotage framework. This activity addresses the following questions:

• Where should the faults be injected?
• What is the most appropriate fault model representing the functional failure modes?
• How should the faults be triggered within the system?
• Where should the fault effect be observed?

After generating simulation settings and creating the fault list, Sabotage executes the
Golden (fault free) and Faulty simulations, as described in Sect. 3.1. A set of scripts
have been developed to achieve the required level of automation. The pass/fail criterion
of the simulation is defined as part of the Workload (cf. Fig. 2 Sabotage Step III). The
user can set that requirement as a vehicle dynamics property violation. The main goal
of comparing the Golden versus Faulty SMUT is to obtain the required results in an
automated way.

The results of the simulation experiments (c.f. Fig. 2 Phase I Results) can then
complete the safety analysis and help dimensioning the safety concept through the
maximum system reaction time. In other words, it can be used to better determine the
required level of fault tolerance (e.g. redundancy or graceful degradation). In brief,
Sabotage helps to identify those hazards (e.g. vehicle does not turn when it should) or
to rank the failure modes with respect to fault occurrence. Dynacar is used to visually
observe these system failures through its 3D virtual environment. To sum up, by using

Early Safety Assessment of Automotive Systems 261



FI approach, it is possible to get data in order to forecast how the system will behave
under the effects of real faults for situations in which no previous data was available.
Considering engineering needs to prove that fault reaction times are shorter than the
FTTI, a good estimation of those values is relevant. This ensures that any fault reaction
is completed before a hazardous event occurs.

Sabotage Phase II: Start an Early Validation of the Safety Concept. Once the
model-based safety architecture has been defined, the designer can obtain an early vali‐
dation of the implemented safety concept. For that, a second run of fault-injection is
needed. After having the safety concept defined and its architecture designed as part of
the system behavioural model, a second run of the FI simulations can be performed.
This allows validating the safety of the system during early design phases. For instance,
if the needed diagnostic coverage it is not achieved, the corresponding design part must
be rebuilt. Furthermore, possible systematic faults or the robustness of the implemented
safety mechanisms can be tested. In this second phase, the user can establish pass/fail
criteria upon the defined safety goals and safety requirements.

4 Case Study: Automated Lateral Control

4.1 Automated Driving Control Architecture

After outlining the Sabotage FI simulation framework, the feasibility of this method is
demonstrated by applying it to a Lateral Control system. It is worth mentioning that no
safety was considered when modelling the system. For that reason, the Sabotage method
is applied starting from Phase I (safety evaluation).

The Lateral Control system is part of a complete control architecture for automated
driving developed in Matlab/Simulink. This automated control architecture consists of
two main systems: Lateral and Longitudinal control. The Lateral Control is the respon‐
sible for steering the vehicle along the most appropriate trajectory depending on the
vehicle and environment state. This automated function consists of three principal func‐
tions.

• Behavioural Planner: It selects the most convenient trajectory depending on the
vehicle manoeuvre (i.e. lane keeping, lane changing and obstacle avoidance). Behav‐
ioural Planner is composed of another three sub-functions (i.e. Perception, Local
Planner and Decision). The Perception function supplies information from the
vehicle state sensors and environment state sensor as Differential GPS (DGPS). It
has to be pointed out that no sensor fusion is considered in the current design. The
Local Planner receives information from the environment sensors to obtain vehicle
position. At last, the Decision function creates the optimal trajectory considering the
manoeuvre that the vehicle shall perform.

• Trajectory Controller: Keeps the vehicle correctly on the trajectory. Knowing the
lateral error, the angular error and the curvature of the path, Trajectory controller
calculates the Variation Correction “Cv”. The algorithm chosen for the evaluation of
this design is the so-called Control Law algorithm and it is defined as formula (1).

262 G. Juez et al.



Cv = K1 ∗ elat + K2 ∗ eang + K3 ∗ Curvature (1)

• The steering function: Controls the steering wheel to set the vehicle on the trajectory
defined by Behavioural Planner. It obtains the input values from the Trajectory
Controller.

4.2 Safety Evaluation of the Lateral Control System

Section 4.1 explains how the automated guidance must be performed synchronously
with the longitudinal and lateral control. As functional safety is a crucial requirement,
this section shows a safety evaluation for an existing preliminary Lateral Control System
Behavioural Model. By performing the required simulations, the safety of the system is
evaluated so that the most suitable safety concept is obtained. Hence, the following
issues have been addressed:

• Simulation-based data acquisition with regards to component failure effects in the
presence of real faults observed on vehicle level.

• Dimensioning the functional safety concept by applying the process explained in
Sect. 3.2. This implies elaborating a fault tolerant Lateral Control system to avoid
possible hazards and to ensure a high level of dependability through fail-operational
behaviour or graceful degradation.

In Sect. 4.1, the main functions of the Lateral Control system have been introduced
and the Malfunctions related to the Lateral Control system (cf. Fig. 2, Failure Modes
Identification) consist of: Behavioural Planner (Unwanted Local Planner, Unwanted
Perception, Unwanted Decision), Trajectory Controller (Omission, Commission) and
Steering (Omission, Commission). These malfunctions or failure modes are necessary
to derive a proper configuration of the required fault models (see Table 2, 2nd column).
Those functional failure modes can be reproduced at system level (e.g. steering omis‐
sion) or even as component level malfunctions (e.g. DGPS information omission). After
completing that step, the step one of the first phase of Sabotage is applied. This requires
the selection of the Lateral Control SMUT as the design-model for which the safety will
be evaluated. In detail, the operational situation is specified: the speed of the vehicle is
set to 45 kph maximum in a fluent urban traffic and performing a lane keeping manoeuvre
on a curve at a city intersection.

With the aim of seeing the failure effects on vehicle level, Functional Failure Modes
associated to the functions have been reproduced. The malfunctions are triggered while
the vehicle is driving on a curve. In order to see system and vehicle level effects, func‐
tional failure modes related to the DGPS (Differential GPS) and the steering controller
have been reproduced. The fault list (cf. Table 1) is specified as by following the template
depicted in Sect. 3.1. Fault durations are randomly filled in as multiple of the simulator
resolution (1 ms) and triggers are curve positions (X,Y).

Early Safety Assessment of Automotive Systems 263



Table 1. Example of a fault list generation

Component Fault location
(target signals)

Fault model Fault duration Fault trigger
(X,Y)

DGPS X,Y FrozenLastValue 150 ms 10 m, 20 m
DGPS X,Y Delay 100 ms 20 m, 30 m
Steering ECU Steering FrozenLastValue 70 ms 30 m, 30 m

By employing the process described in Sect. 3.1, the saboteur blocks are automati‐
cally injected to the SMUT, through a custom Matlab script, which holds the proper
configuration by means of the previously built up fault list. Together with the saboteurs,
the read-out blocks are included as well. Then, the fault injection simulations are
performed by triggering them at many driving circuit points on a curve to obtain the
most critical ones (see Fig. 3).

Fig. 3. Faulty system behavioural model

Table 2 lists the most relevant Potential Effects and Hazards obtained by FI simu‐
lation. For this purpose, the Lateral Control malfunctions are modelled by means of
Fault Models which allow to obtain vehicle level effects and to get a more precise
definition of the safety goals.

As depicted in Table 3, based on the identified hazards, appropriate safety goals
have been derived. Figure 4 depicts how the maximum time before the vehicle
dynamics are unsafely affected is obtained. More precisely, it illustrates a steering
omission based on the Yaw Rate and the Lateral Error signals (observation points
or read-outs).

264 G. Juez et al.



Table 2. Hazard and potential effects obtained by FI simulation

Fault target Fault model Potential effects Hazard
Steering FrozenOutOfRange Steering shaft is broken Vehicle may perform a

sudden steering and go out
of control causing
multiple collisions

Frozen
SteeringValueMax

Strong deviation of
steering shaft position

Vehicle may perform an
oversteering, spin and
cause multiple collisions

Frozen
SteeringValueMin

Strong deviation of
steering shaft position

Vehicle may perform an
understeering and go out
of control causing
multiple collisions

Frozen LastValue Constant steering shaft
position

Vehicle may depart lane
due to blocked steering
angle causing multiple
collisions

Trajectory
controller

Frozen LastValue Constant Cv value Vehicle may depart lane
due to unwanted steering
angle causing multiple
collisions

Frozen OutOfRange Controller is saturated Vehicle may depart lane
due to unwanted steering
angle causing multiple
collisions

Behavioural
planner

FrozenLastValue The trajectory is not
updated

Vehicle may follow a not
updated trajectory

DGPS Frozen DGPSLastValue Behavioural planner is
not updated

Vehicle may depart lane
because of following an
unwanted trajectory and
cause multiple collisions

Frozen RandomValue Behavioural planner
change the trajectory

Vehicle may perform a
sudden steering, go out of
control and cause multiple
collisions

Table 3. Definitions of the lateral control safety goals

Safety goal ID Safety goal definition
SG1 An unwanted steering angle shall be prevented
SG2 A sudden steering manoeuvre due to an unwanted trajectory shall be

prevented
SG3 An unwanted behavioural planner shall be prevented

Early Safety Assessment of Automotive Systems 265



Fig. 4. Basis for FTTI calculation

To calculate the proper FTTI (Fig. 4) value by simulation, the maximum lateral error
is taken into account as the pass/fail criterion. This value is analytically calculated using
the formula (2). The following formula is used to determine where the vehicle dynamics
is certainly affected:

LatErrormax =
(Lanewidth − Vehiclewidth)

2
=

3, 5 − 1, 9
2

= 0, 8 m (2)

Fig. 5. Lateral error values for different steering and DGPS fault durations

266 G. Juez et al.



Figure 5 depicts the collection of the results for faults introduced in X,Y DGPS
signals and in the steering controller.

In addition, Table 4 represents how the FTTI values, the safety goals (Table 3) and
the fault detection times (Fault duration) have been filled in based on FI experiments.

Table 4. Lateral control: hazard analysis

Function Malfunction SG Safe state FTTI
(ms)

Fault duration
(ms)

Steering Commission SG1 Ensure integrity of
command execution

196 70

Trajectory
controller

Commission SG2 Graceful degradation
and driver regains
control

250 114

Behavioural
planner

Commission SG3 Graceful degradation
and driver regains
control

327 123

Table 5 lists the Functional Safety Requirements (FSR) based on FI simulations.

Table 5. Lateral control: definition of safety requirements

FRS Related SG Definition
FSR1 SG1 The system shall always assure that the yaw rate does not increase

more than 16%
FSR2 SG1 The steering shall be fail-operational
FSR3 SG1 The operational state of the steering controller shall be monitored

and reported to superordinate controller
FSR4 SG1 The system shall always assure that the range of the steering shall be

between [–540, 540] degrees
FRS5 SG2 The system shall always assure that the LateralError value must be

less than LateralErrorMax
FSR6 SG2 The system shall always assure that the Controller Cv parameter

value is between [–1, 1]
FSR7 SG2 The operational state of the trajectory controller shall be monitored

and reported to superordinate controller
FSR8 SG3 The trajectory shall be calculated based on the most appropriate

manoeuvre (e.g. lane keeping, lane changing)
FRS9 SG3 The system shall assure that the new position (Xt+1,Yt+1) of the

trajectory based on vehicle speed shall not exceed more than 9% of
the current position(Xt,Yt)

FSR10 SG3 The system shall calculate its trajectory starting from the most
appropriate manoeuvre (e.g. lane keeping, lane changing)

FSR11 SG3 The operational state of the behavioural planner shall be monitored
and reported to superordinate controller

Early Safety Assessment of Automotive Systems 267



In the selection of safety concepts, the main outcome is that a redundant steering is
necessary in order to achieve the required level of availability. The main reason is that
a failure related to the steering shall be detected within 70 ms and the availability must
be provided within 196 ms. Regarding failures coming from the Trajectory Controller,
the detection time is established at 114 ms and the maximum system failure reaction
time in terms of vehicle dynamics is 250 ms. Because of these timing results, graceful
degradation might be sufficient in this case. Behavioural Planner malfunctions shall be
detected in less than 123 ms and their effect on vehicle level controlled within 327 ms.
The same applies to the Behavioural Planner for which graceful degradation might be
sufficient.

5 Conclusion and Future Work

We have presented a simulation-based FI approach for an early safety assessment of
automotive systems. Our approach has been evaluated in a case study for the model-
based design of a Lateral Control system. From a novelty standpoint, we focused on
determining of the fault detection time interval for permanent faults based on the
maximum lateral error, as a vehicle dynamics property. A major strength of the method
introduced in this paper is its usage during early design phases to evaluate the safety of
the system. This allows dimensioning and trading-off between safety concepts and
performs an early safety validation of the design. The uncertainty related to some auto‐
motive systems, such as an automated vehicle, makes traditional safety analysis methods
definitely not sufficient, requiring additional virtual and simulation solutions. Forthwith,
FI establishes itself as a way of completing and verifying previously carried out safety
analyses. Given that analysing system reactions under the effects of real faults can a
burden-some issue, these FI experiments arise as a viable solution.

Our future work spans the spectrum from relaxing the fault simulation constraints
to instrumenting the automated assessment work. This includes: (1) adding the capability
of automatically collapsing the injection of faults to generate optimised fault lists, (2)
integrating with contract-based approaches, (3) connecting to other system modelling
environments such as Papyrus/SysML, (4) linking to model-based safety analysis tools,
and (5) comparing FI simulation results with the results of performing software fault
injection for a model-car.

Acknowledgments. The authors have partially received funding from the ECSEL JU AMASS
project under H2020 grant agreement No 692474, the UnCoVerCPS project under H2020 grant
agreement No 643921 and MINETUR (Spain).

References

1. Koopman, P., Wagner, M.: Challenges in autonomous vehicle testing and validation. In: 2016
SAE World Congress (2016)

2. ISO 26262: Road vehicles – Functional safety, International Organisation for Standardisation
(ISO) (2011)

268 G. Juez et al.



3. Pintard, M.L.: Des analyses de securite a la validation experimentale par injection de fautes
- le cas des systemes embarques automobiles. Ph.D, Institut National Polytechnique de
Toulouse (2015)

4. Pena, A., Iglesias, I., Valera, J., Martin, A.: Development and validation of Dynacar RT
software, a new integrated solution for design of electric and hybrid vehicles. In: EVS26 Los
Angeles (2012)

5. Ruiz, A., Juez, G., Schleiss, P., Weiss, G.: A safe generic adaptation mechanism for smart
cars. In: IEEE 26th International Symposium on Software Reliability Engineering (ISSRE),
pp. 161–171, Gaithersbury, MD (2015). doi:10.1109/ISSRE.2015.7381810

6. Ziade, H., Ayoubi, R., Velazco, R.: A survey on fault injection techniques. Int. Arab J. Inf.
Technol. 1(2), 171–186 (2004)

7. Benso, A., Di Carlo, S.: The art of fault injection. J. Control Eng. Appl. Inform. 13(4), 9–18
(2011)

8. Svenningsson, R.: Model-implemented fault injection for robustness assessment, Licentiate
Thesis, Stockholm (2011)

9. Vinter, J., Bromander, L., Raistrick, P., Edler, H.: Fiscade - a fault injection tool for SCADE
models. In: Automotive Electronics 2007 3rd Institution of Engineering and Technology
Conference, pp. 1–9 (2007)

10. Silveira, A., Araujo, R., De Castro, R.: FIEEV: a co-simulation framework for fault injection
in electrical vehicles. In: 2012 IEEE International Conference on Vehicular Electronics and
Safety, ICVES 2012, pp. 357–362 (2012)

11. Jones, S., Armengaud, E., Böhm, H.: Safety simulation in the concept phase: advanced co-
simulation toolchain for conventional, hybrid and fully electric vehicles. In: Fischer-Wolfarth,
J., Meyer, G. (eds.) Advanced Microsystems for Automotive Applications 2014. Lecture
Notes in Mobility, pp. 153–164. Springer, Switzerland (2014)

12. Folkesson, P., Ayatolahi, F., Sangchoolie, B., Vinter, J., Islam, M., Karlsson, J.: Back-to-back
fault injection testing in model-based development. In: Koornneef, F., Gulijk, C. (eds.)
SAFECOMP 2015. LNCS, vol. 9337, pp. 135–148. Springer, Cham (2015). doi:
10.1007/978-3-319-24255-2_11

13. Arlat, J., Aguera, M., Amat, L., Crouzet, Y., Fabre, J.C., Laprie, J.C., Martins, E., Powell, D.:
Fault injection for dependability validation: a methodology and some applications. IEEE
Trans. Softw. Eng. 16, 166–182 (1990). Fault injection for dependability validation: a
methodology and some applications

14. Algirdas, A., Laprie, J.C., Randell, B., Landwehr, C.: Basic concepts and taxonomy of
dependable and secure computing. IEEE Trans. Dependable Secur. Comput. 1, 11–33 (2004).
doi:10.1109/TDSC.2004.2

Early Safety Assessment of Automotive Systems 269

http://dx.doi.org/10.1109/ISSRE.2015.7381810
http://dx.doi.org/10.1007/978-3-319-24255-2_11
http://dx.doi.org/10.1109/TDSC.2004.2

	Early Safety Assessment of Automotive Systems Using Sabotage Simulation-Based Fault Injection Framework
	Abstract
	1 Introduction
	2 Related Work
	3 Overview of the Simulation-Based Fault Injection Approach
	3.1 The Sabotage Tool Framework
	3.2 Using Sabotage for an Early Safety Assessment

	4 Case Study: Automated Lateral Control
	4.1 Automated Driving Control Architecture
	4.2 Safety Evaluation of the Lateral Control System

	5 Conclusion and Future Work
	Acknowledgments
	References




