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Abstract: The current IT market is more and more dominated by the “cloud continuum”. In the
“traditional” cloud, computing resources are typically homogeneous in order to facilitate economies
of scale. In contrast, in edge computing, computational resources are widely diverse, commonly
with scarce capacities and must be managed very efficiently due to battery constraints or other
limitations. A combination of resources and services at the edge (edge computing), in the core (cloud
computing), and along the data path (fog computing) is needed through a trusted cloud continuum.
This requires novel solutions for the creation, optimization, management, and automatic operation
of such infrastructure through new approaches such as infrastructure as code (IaC). In this paper,
we analyze how artificial intelligence (AI)-based techniques and tools can enhance the operation
of complex applications to support the broad and multi-stage heterogeneity of the infrastructural
layer in the “computing continuum” through the enhancement of IaC optimization, IaC self-learning,
and IaC self-healing. To this extent, the presented work proposes a set of tools, methods, and tech-
niques for applications’ operators to seamlessly select, combine, configure, and adapt computation
resources all along the data path and support the complete service lifecycle covering: (1) optimized
distributed application deployment over heterogeneous computing resources; (2) monitoring of
execution platforms in real time including continuous control and trust of the infrastructural services;
(3) application deployment and adaptation while optimizing the execution; and (4) application
self-recovery to avoid compromising situations that may lead to an unexpected failure.

Keywords: optimization; self-learning; concept drift; anomaly detection; cloud continuum;
self-healing

1. Introduction

Infrastructure as code, or IaC, aims to automate the provisioning, configuration, and
deployment of infrastructure resources based on a machine-readable file that is developed
by Ops teams. A software agent tool then processes it and executes tasks to provision,
configure, and deploy the user-defined infrastructure. This automatic deployment can be
improved through optimization techniques, trying to provide the best selection of resources
and configurations in each case. In this regard, it is worth mentioning that the formulation
and solving of optimization problems by the AI community has been enhanced in recent
years with the emergence of new paradigms related to problem modeling, as large-scale
optimization or multi-objective problems characteristics that are typically present in the
DevOps environments.

In any case, despite several works that have been proposed in last years, IaC still
suffers from several important issues, such as the efficient optimization of the microservices
deployed, the dynamic analysis of the service performance, or the implementation of
corrective actions at run-time. The lack of available works in the literature that give an
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efficient answer to issues like that has motivated the organization of the PIACERE project.
The main objective of PIACERE is to develop a solution that covers the development,
deployment, and operation of IaC of applications deployed on the cloud continuum. The
main target users of PIACERE are DevSecOps teams.

In this work, we describe some of the most important aspects that compose the
PIACERE project, in which we propose the use of AI-based techniques to assist DevOps
teams in the whole lifecycle of infrastructure management. Namely, in the task of deploying
distributed applications in heterogeneous cloud environments (cloud continuum), helping
them first in selecting and combining the optimal infrastructure resources available; later,
in detecting specific behaviors that could cause unexpected failures through continuous
monitoring of infrastructural services; and finally, in the automatic self-healing of the
application during run-time to allow the final users an optimal experience regardless of
possible infrastructure shortcomings or failures. While relevant work exists [1,2], they
differ in (1) the resource type that they target for the optimization as they focus only
either on virtual machines (VMs) (ref cloudlightning) or on VMs, DB, and Storage (ref
decide), leaving aside the computing continuum, and (2) they do not present a full-fledged
solution that detects anomalies in the infrastructure which can involve the triggering of a
self-healing strategy.

To reach these objectives, we describe how to use innovative approaches such as evo-
lutionary computation to solve multi-objective optimization problems, machine learning
techniques applied to the analysis of dynamic data streams, or the use of IaC approaches
that allows taking corrective actions at run-time. This is precisely the main contribution
of this paper: the description of the novel solving approach that we have proposed for
efficiently deal with cornerstone aspects of the IaC lifecycle, such as (1) the optimized
choosing of the deployed microservices, (2) the efficient monitoring and the adaptation of
the system to the overall performance demonstrated, and (3) the effective and dynamic
autonomous corrective actions at run-time.

The rest of the paper is structured in three main sections. Section 2 is dedicated to
present the related work on how AI can support the DevOps operations and, in particular,
on the fields that are most relevant for the article: optimization of the IaC, self-learning
through monitoring and anomaly prediction, and self-healing mechanisms for corrective
actions. Section 3 describes the PIACERE approach for an optimized and self-healed
IaC. The main components of the proposed solution are defined—namely, optimization,
self-learning, and self-healing—and an overview of how each of them works is provided.
Finally, Section 4 provides the conclusions, a general overview of the research and its
future works.

2. Motivation and Related Work

Operating and managing a DevOps environment implies a high degree of complexity.
Furthermore, the emergence of approaches for the more and more heterogeneous infras-
tructural layer, such as IoT or the cloud continuum (combination of the cloud and the
edge), requires novel solutions to monitor, manage, and operate distributed application
environments. DevOps teams need to effectively gather, analyze, and take decisions based
on the information available from the infrastructural layer to address and resolve potential
issues so that the business continuity of the application running on top of this environment
is always guaranteed. On the contrary, since humans are currently not well prepared to
handle the massive volumes of data and computing in daily operations, artificial intelli-
gence is expected to become the critical tool for computing, analyzing, and transforming
how teams develop, deliver, deploy, and operate applications.

DevOps and AI are interdependent as DevOps is a business-driven approach to deliver
software, and AI is the technology that can be integrated into the system for enhanced
functionality. With the help of AI, DevOps teams can test, deploy, release, and monitor
software more efficiently. AI can also improve automation and support decision making
by quickly identifying issues and mitigation actions.
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In the next subsections, we explore the state of the art on the three main relevant
areas of the DevOps cycle where we think AI can positively impact the DevOps process,
namely optimization of the deployment configuration, self-learning through autonomous
monitoring, and prediction of anomalies techniques and self-healing mechanisms. We
combine the analysis of these AI-related methods with the study of the current state of the
art of approaches and technologies for the automatization of infrastructure generation and
configuration, particularly IaC related.

2.1. Deployment Configuration Optimization Supported by AI Methods

The formulation and subsequent solving of optimization problems by employing
advanced artificial intelligence methods is a hot topic in the current scientific community,
maintaining the remarkable popularity gained a couple of decades ago. Particularly, in
recent years, the attention received has been intensified due to the emergence of new
solving paradigms mainly focused on new ways of problem modeling and the huge impact
of knowledge streams such as evolutionary computation (EC) and swarm intelligence
(SI) [3–5].

On this subject, and due to the inherent social and scientific value behind the efficient
resolution of optimization problems, a myriad of solving schemes have been proposed in
recent years, which have shown great performance on a countless variety of real-world
applications. In this regard, the most recognized techniques can be classified into three
main categories: exact methods, heuristics, and metaheuristics. Among these categories, it
is the last one that enjoys great popularity due to its efficiency and adaptability features.

Focusing our attention to optimization itself, a rich spectrum of valuable optimization
kinds has been formulated up to now, such as robust optimization, dynamic optimization,
transfer optimization, large scale global optimization and many others. Arguably, one
of the most successful and applicable kinds of optimization is known as multi-objective
optimization (MOO, [6]), which in fact is the one on which PIACERE focuses its attention.

Briefly explained, the principal goal of MOO is to find a group of solutions that
efficiently balance several conflicting optimization objectives. It is important to mention
that these objectives are defined on a single domain, which means that a single search
space is explored. This last feature distinguish MOO from other optimization types such as
transfer optimization [7]. MOO works with the existence of Pareto trade-off among the
objectives at hand. Thus, MOO algorithms build an estimation in the form of a group of
potential solutions. Consequently, there is not a sole solution for each problem but a set of
solutions that meet all objectives to a certain level.

In this context, methods that can be framed in the wide category EC have particularly
gained remarkable popularity in the related community for solving MOO problems [8].
This fact has led to an unprecedented amount of interesting research works presenting
algorithmic procedures for the efficient tackling of MOO problems through the leverage of
the self-learning feature of their immitted natural phenomena. The principal reason behind
the popularity gained by this broad family of solvers is their remarkable performance,
which has been proved in hundreds of problems and real-world problems. In this line,
many different inspirational sources have been used for building optimization techniques,
such as the behavioral patterns of bees, bats, and buffalos; the social procedures of humans
or animals; or the physical procedures behind natural phenomena such as the rain or the
water cycle.

With all this, the election of one specific algorithm for tackling an optimization problem
is usually a hard task. Usually, this decision depends on different factors, such as the
amount of optimizing objectives, the non-functional requirements, or the complexity of the
objective function. Anyway, there are plenty of well-established and reputed MOO solvers
in the current literature, which frequently guide the decision and the final implementation
of the deployed algorithms. In this regard, some of the methods which will be carefully
analyzed in the context of the PIACERE IOP platform are:
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• Non-dominated sorting genetic algorithm II (NSGA-II, [9]): The NSGA-II is one of the most
used and recognized MOO methods. Essentially, it is a generational genetic algorithm,
which employs a ranking procedure for easing the estimation of the crowding distance
density and the convergence of the Pareto. This also contributes to the enhancing of
population diversity.

• Strength Pareto evolutionary algorithm 2 (SPEA2, [10]): the main advantages of this
reputed method are: (i) the improvement of the fitness assignment pattern (which
considers the number of individuals dominated), (ii) the incorporation of a near-
est neighbor density estimator for more fine guidance of the search procedure, and
(iii) a novel archive truncation technique, which assures the preservation of
boundary solutions.

• Multi-objective evolutionary algorithm based on decomposition (MOEA/D, [11]): MOEA/D
is characterized by the decomposition of the MOO problem into several scalar sub-
problems, optimizing them in a simultaneous way. Specifically, each subproblem
is tackled employing information from its nearer neighborhood problems. This last
feature makes MOEA/D be a less demanding method in comparison with other
similar strategies.

• Speed-constrained multi-objective particle swarm optimization (SMPSO, [12]): this method
is based on the well-known particle swarm optimization algorithm. Thus, the prin-
cipal feature of this method is the use of a velocity constraint mechanism to avoid
particles flying beyond the limits of the search space. This method employs an external
bounded-sized archive for storing the non-dominated solutions encountered along
with the search procedure, from which the leader is also selected.

• Multi-objective cellular genetic algorithm (MOCell, [13]): the MOCell is a recently pro-
posed MOO algorithm that is inspired by the reputed cellular genetic algorithm family.
This method also employs an external archive for saving non-dominated solutions,
and it implements a feedback mechanism in which solutions from this archive are
drawn and used in the selection step of the algorithm.

Usually, multi-objective problems are conceived for optimizing two different con-
fronting objectives. In any case, in many real-world applications, the number of objectives
to optimize can be higher than two. This trend gives rise to many objective algorithms,
which should deal with the existence of many confronting objectives, while also trying to
define the main relationships between them. These are some interesting alternatives to
consider [14]:

• Non-dominated sorting genetic algorithm III (NSGA-III): this successful method follows
the same philosophy and structure of the above-mentioned NSGA-II. NSGA-III is
principally characterized by emphasizing a non-dominated population of individuals
near a group of supplied reference points.

• Multi-objective evolutionary algorithm based on dominance and decomposition (MOEA/DD):
this advanced and successful method unifies some efficient concepts, combining
dominance and decomposition-based approaches, for many-objective optimization.

• Strength Pareto evolutionary algorithm based on reference direction (SPEA/R): This method
is an extension of the above mentioned SPEA, introducing a reference direction-based
density estimator, a new fitness assignment procedure, and a new environmental
selection mechanism.

In the specific context of PIACERE, the optimization problem to be modeled consists
of having a service to be deployed and a catalogue of infrastructural elements, with
the challenge of obtaining the best combination of infrastructural elements and resource
configuration to optimally deploy the service. Despite being an incipient research field,
some studies dealing with similar problems can be found in the literature.

In [15], a novel optimization system is presented capable of matching the specific
functional and non-functional requirements of a certain Big Data application to the capa-
bilities offered by an IaaS infrastructure and the Big Data platform deployed therein. To
do that, the optimization problem is modeled and formulated as a many-objective one,
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and it is efficiently solved using the above introduced NSGA-II. This paper studies the
optimal balance among three relevant design aspects when building an IaaS infrastructure
for Big Data applications: reliability, cost, and net computing capacity (non- functional
requirements—NFRs).

Using as inspirations the above-mentioned pioneering works, Ref. [16] presents a
similar optimization problem in a quite similar real-world situation. In that case, the
problem is formulated as a MOO one, trying to leverage two principal objectives: meeting
of the characteristics fixed by the microservices developers (classification, public IP, disk
space, RAM, and number of cores) and the fulfillment of the microservices’ NFRs (location,
availability, cost, performance, and legal level).

These two works are especially inspiring for this research, the synergy among Big Data
and cloud computing encounters in IaC a practical cloud model by which organizations can
deploy Big Data functionalities externally with the independence of the service provided
and in a cost-efficient fashion [17]. Thus, instead of buying hardware materials, users can
buy IaaS on-demand usage time depending on their specific demands, in a similar manner
to electricity billing [18].

Lastly, it is noteworthy that the literature is scarce in studies focused on the optimal
deployment of infrastructural elements for giving an answer to a specific service. A
slightly related example can be found in [19]. This study introduced an automated system
for answering the sizing cluster question by means of diverse functionalities as tailored
cluster resources, performance prediction, task scheduling procedure, or configuration
requirements. In any case, the system implemented in this research does not offer a sole
solution to infrastructure definition but rather assists the user in the design process, giving
an answer to the most frequent doubts.

2.2. Self-Learning with AI for Data Streams in the Presence of Concept Drift and Anomalies

Nowadays, many machine learning models in production are still static, i.e., they were
developed and trained by data scientists or researchers on historical data, and from that
point on, they will not be able to incorporate new knowledge. In most real applications,
data arrive in the form of fast streams, and new data characteristics or trends should be
incorporated into the existing models. When they remain static, these models should be
retrained on a fairly regular basis (daily or even more frequently). However, this is not
very efficient because:

1. It implies that an expert would have to be focused on deciding which is the best
moment to train the models again.

2. Nowadays, data are produced in the form of fast streams.
3. Data are affected by non-stationary phenomena that occur fast, and a human cannot

successfully detect changes in a real-fashion environment.

Therefore, some level of automation (self-learning) is crucial, and the state of the art is
ready to provide us with some interesting solutions [20,21]. In the literature, we can find
the term self-learning referring to unsupervised learning, self-supervised learning, self-
labelling, or even reinforcement learning. In all cases, the idea is to automatically generate
some kind of supervisory signal to solve some tasks, e.g., to learn data representations [22]
or to automatically label a dataset. On other occasions, it refers to autoencoders (neural
networks) [23]. However, in IaC, the other well-known meaning [24–27] refers to the ability
of a model of:

• Ingesting new data as it becomes available (incremental learning);
• Detecting by itself changes (drifts) in data distribution and automatically retraining

after this occurs;
• Warning the system when anomalies are detected;
• Self-optimizing and self-calibrating in case of performance issues due to concept drift

or anomalies.
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Under these circumstances, self-learning becomes a perfect ally in those scenarios
where the change or anomaly may be present. An autonomous model allows systems to be
more accurate and reliable in production for much longer periods of time. However, this is
hard to achieve and presents several challenges:

• These models are based on algorithms that are usually more difficult to fine-tune;
• Overfitting can be a great concern;
• The stability of the model must be assured;
• False alarms (drift detections) may provoke that the retraining process is useless, even

degrading the performance of the model;
• An anomaly must not be confused with a drift.

The latter point is not trivial [28] since one of the challenges for concept drift handling
algorithms is not to mix the true drift with an outlier or noise, which refers to a once-
off random deviation or anomaly [29,30]. No adaptivity is needed in the latter case; as
Figure 1 shows, the concept drift phenomenon can appear in different forms: abrupt (the
new concept completely replaces the old one in just one step), gradual (the new concept
replaces the old one in several steps), incremental (the new concept appears incrementally),
recurrent (often related to seasonal changes), blip/noise/outliers, etc.
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and circles represent the prevailing concept at every time instant [31].

Finally, it is worth mentioning the cyber risk component that is usually present in
cloud technologies and concretely in those that deal with real-time data [32]. In order to
mitigate these kinds of risks, PIACERE incorporates a specific component of self-learning
for identifying security issues, such as the use of anomaly detection mechanisms to early
detect attacks, unauthorized accesses, etc.

The next section provides the required background on these relevant topics.

2.2.1. Data Stream Analysis

Applications generating huge amounts of data in the form of fast streams are in-
creasingly prevalent. These applications collect data from almost any source and analyze
them to find answers that enable cost and time reductions, new product developments,
optimized offerings, smart decision making, etc., or try to improve the operation in IaC. In
these scenarios, instead of all training data being available from the beginning, data are
often received over time in streams of samples or batches. Data streams are the basis of
the real-time analysis, which is composed of sequences of items, each having a timestamp
and thus a temporal order. Data can be previously labeled or not, implying supervised,
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unsupervised, and semi-supervised techniques. A stream data environment shows several
particularities [33] that we should consider when designing our algorithms:

• Each sample or batch is processed only once on arrival. Stream data analysis solutions
should be able to process information sequentially, accordingly to its arrival. These
solutions must not put the resources (mainly memory space and processing time
restrictions) at risk;

• The processing time must be small and constant, without exceeding the ratio in which
new samples arrive. Otherwise, some kind of temporal storage should be considered;

• The stream data analysis solution should use only a preallocated amount of
main memory;

• The model/algorithm on which this stream data analysis solution is based should be
completely trained before the next sample arrives.

In the case at hand, data also arrive in the form of data streams, and thus they may
suffer anomalies and concept drift phenomenon, as we will demonstrate later. Finally, it
deserves mentioning here that data streams of the monitored infrastructure may be time
series, in which case the streaming strategy should be similar to [34] due to the fact that the
temporal dependence emerges.

2.2.2. Concept Drift Detection

The data generation process in these real-time applications is not always stationary
because it is subject to dynamic externalities that affect the stationarity of such data streams,
e.g., seasonality, errors, etc. This causes such applications to suffer from the concept
drift phenomenon. The predictive models that are trained over these data streams may
become obsolete and have problems adapting suitably to the new conditions. Thus, in
these scenarios, there is a pressing need for drift detection and adaption algorithms that
detect and adapt to these changes as fast as possible in order to keep the applications
updated and providing a good performance [35].

Consequently, drift detection turns into a relevant factor for those active mechanisms
that need a triggering mechanism to perform an adaptation after drift occurs [36]. A drift
detector should estimate the time instant at which change occurs over the data stream so
that when the detection appears, the adaptation mechanism is applied to the base learner
in order to avoid the degradation of its predictive performance. The successful design of
an effective detector is not straightforward, yet it is primordial to achieve a more reliable
system. The way to find the best strategy for concept drift detection still remains an open
research issue, as confirmed in [36]. This challenge to find the best universal solution
becomes evident in the most recent comparison among drift detectors carried out by [37].
In light of the results achieved in the [37] manuscript, we can realize that there is no method
with the best metrics or even showing the best performance in most cases. We can state
that the ideal goal is to develop detectors (1) that detect all existing drifts in the stream;
(2) with low latency; (3) with as few as possible false alarms; (4) with as few as possible
missed detections; and (5) that minimize the distance of the true positive detections, always
assuring a good classification performance. Therefore, as there is not an ultimate detector,
we will have to choose one, depending on the characteristics of the application or scenario,
giving more importance to some metrics than others.

2.2.3. Anomaly Detection

Data analysis nowadays faces a number of challenges. One of them has been ex-
tensively studied due to its importance in the field, anomaly detection. When analyzing
real-world data, data that differ from the norm can be found; such data are called an
anomaly or outlier. Anomalies can be caused by inaccurate concepts. Hawkins [38] defines
an outlier as “an observation that deviates so much from other observations as to arouse suspicion
that it was generated by a different mechanism”. Anomalies are also referred to as abnormalities,
deviants, or outliers in the data mining and statistics literature [39].
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Anomaly detection provides a set of algorithms and techniques that can be used to
spot instances dissimilar to all others.

In recent years, an important growth of deep neural networks, a subset of the machine
learning field, has been seen, with astonishing outcomes in different application areas,
also when applied to anomaly detection [40,41]. Therefore, deep learning-based anomaly
detection (DAD) algorithms have obtained a privileged position and are one of the focus
areas. It is important to note that boundaries between abnormal and normal data are not
precisely defined in evolving environments. This lack of boundaries represents challenges
for both conventional and deep learning techniques.

Due to the large-scale nature of the data to be analyzed in the cloud continuum due to
the heterogeneity of the resources, it becomes nearly impossible for the traditional machine
learning techniques to scale and find anomalies properly. DAD techniques can handle
this large amount of data and are also able to learn hierarchical discriminative features
solving the problem end-to-end by removing the need of developing manual features by
domain experts.

2.3. Self-Healing Techniques for the Autonomous Implementation of Corrective Actions
at Run-Time

Once the IaC is deployed to create and deploy the software components into pro-
duction, it becomes necessary to monitor the run-time environment behavior to detect a
deterioration of quality-of-service parameters and take according actions to improve the
resource usage of the overall system.

Thereby, it becomes possible to take actions to prevent the quality of service and service
level agreement violations. These actions usually include a redeployment or readaptation
of the application to the new situation, implying the selection and configuration of new
resources totally (for all the components) or partially (substituting only the failing resource),
as well as porting the affected components from one resource to another, and setting up
the network (i.e., specific bandwidth or dedicated network connections). Thus, changes
in the IaC need to be made so that the new resources are created and configured. All this
needs to be done without compromising the business continuity, especially when tackling
critical infrastructures where the response time becomes vital, and the system must be
resilient and able to operate in different scenarios, including lack of connectivity that can
be replaced by alternative communication technologies (i.e., new edge nodes).

Application of self-healing, referring to autonomous and responsible behavior of the
applications to changes in the execution environment, has been a challenge since cloud and
distributed computing paradigms appeared on the software operation gameboard. Several
solutions have been proposed for specific scenarios such as IoT [42,43] or traditional cloud
environments [44]. Other solutions are focused on specific steps in the self-healing and self-
configuration process [45]; in the resolution of specific problems such as scalability [46] or
trust enforcement [47]; or in the usage of specific novel architectures such as multi-agents to
address the problem [21]. However, the cross/multi-layer and the networking aspects are
challenges that have not been addressed, nor faced the problem in a generic way, covering
the whole self-healing process from the discovery, optimization, and configuration of the
resources, to the network preparation and deployment of all the software layers. All these
actions can be automatized through IaC creation and update.

Self-healing mechanisms can include several actions, going from the starting up of the
failing resource with a new one to the reconfiguration of the network or the orchestration
of portability workflows so that business continuity is ensured. Several approaches have
been applied to automatically create computational resources (usually virtual machines),
but seldom few initiatives can be found when addressing heterogeneous environments
from different nature (edge and cloud) and networking set up. In such a complex envi-
ronment, self-healing actions may need dynamic orchestration of the services used for the
redeployment following the proper workflow as well as network resources re-allocation
and setting up.
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There are a wide variety of tools that tackle the problem of redeployment and re-
configuration of existing infrastructure in response to an event or business need. The
first are the so-called configuration management tools. These tools promote the creation
and configuration of software environments based on a set of prerequisites in existing
infrastructure. To summarize, these tools manage a set of already existing devices. They
require a secure connection with such devices and are able to execute commands on them
with an existing user of the system. Some of the most common configurations available
manage users, services, files, and packages, among others.

All the tools analyzed were developed at least ten years ago; hence, they are considered
stable enough to be adopted in production environments. Ansible [48] and Saltstack [49]
both promote the use of YAML as the configuration language, whereas Puppet [50] and
Chef [51] have their own domain-specific language. In terms of language style, Ansible
and Chef have adopted a procedural language style, in which a series of steps are defined
to achieve the final state. On the other hand, Puppet and SaltStack utilize a declarative
language in which the final state is defined, but how that state will be reached is up to the
tool itself. Finally, we try to measure the popularity of each tool; it is hard to establish such
a thing, especially since Chef and Puppet are such frequently used words in the English
language. Therefore, we opt to compare the number of stars on their respective GitHub
repositories. Using this metric, Ansible is by far the most popular having more than three
times as many stars as the second one, SaltStack.

Secondly, infrastructure provisioning tools differ from the tools mentioned above
in which these do not communicate with the servers or devices directly; instead, they
operate at a higher level by communicating with the cloud API. By doing so, they can
elastically create, modify, and destroy the infrastructure. The first of these tools is Heat [52],
which is a service to orchestrate cloud applications using templates. It promotes the use
of templates for the description of the infrastructure in a format that aspires to be both
human- and machine-readable. However, it focuses on OpenStack and lacks integration
with other cloud providers. The second one is AWS CloudFormation [53]; it is a set of tools
provided by AWS that promises an easy manner to model a set of resources that will be
deployed in the AWS cloud. It provides means for deploying, reconfiguring, and tearing
down cloud resources that may span across different regions and accounts. Both Heat
and AWS CloudFormation provide similar functionalities but focus on particular cloud
providers. In this sense, Terraform [54] tries to unify the provisioning of cloud resources
of different providers in a common tool. It promotes the use of a unified workflow in
order to manage cloud resources: (1) write the infrastructure as code, (2) plan and preview
the changes before being applied, and (3) apply the changes in a reproducible manner.
Terraform has gained a lot of traction in the last few years, and it is commonly used for
managing the infrastructure of projects in both industry and academia. All of these tools
excel at managing the lifecycle of cloud resources and delegate in the aforementioned tools
the configuration of such resources.

Thirdly, managing the lifecycle of applications from the development phase to deploy-
ing them in production is a process that has been thoroughly scrutinized in the last few
years. Methodologies such as DevOps and continuous integration and deployment prac-
tices tackle this process and promote a seamless deployment of applications in production
environments, minimizing the needed time for such a process and reducing errors. To this
end, applications are commonly being shipped as containers, and several applications for
the management of such containers have appeared in recent years. Docker Swarm [55] is a
solution that excels for being easy to set up and manage and provides easy integration with
the docker containers technology, the de facto solution for the containerization of applica-
tions. Kubernetes [56] arose from Google’s Borg [57] and offers a myriad of possibilities
to manage the lifecycle of container applications, provides built-in auto scaling and fine
configuration, and is offered by many of the public cloud providers as a service, which
promotes the migration of existing solutions in an easy manner.
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In this sense, some standards have appeared, such as TOSCA [58], which provides a
way to enable portable automated deployment and management of composite applications.
Some of the challenges that TOSCA tries to alleviate are the automated management of such
applications, the portability of the applications, and the interoperability and reusability of
applications components. Yet another tool addressing a similar challenge is CAMEL [59]
which enables the specification of aspects such as provisioning, deployment, service level,
monitoring, scalability, providers, and users, among others. In general, CAMEL can be
used to describe different aspects of self-adaptive cross-cloud applications.

However, other tools approach this problem in a more general way, without the use of
containerized applications. Apache Brooklyn [60] is a framework for modeling, monitoring,
and managing applications primarily in cloud environments. It is envisioned to be a tool
that unifies the provisioning, deployment, and monitoring of an application in a single
tool. It does so by using the concept of blueprints, which is a YAML file in which an
application is defined. The first benefit of using blueprints is that they are composable, and
a blueprint of a process can be incorporated into another one easily. The second benefit
is that they can be treated as source code, which enables testing, tracking, and versioning
them and integrating them as part of the DevOps process. Similarly, Spinnaker [61] defines
itself as a multi-cloud continuous delivery platform envisioned to release software with
high velocity and confidence. It is used for managing the cloud resources as well as to
manage the application deployment by defining a pipeline that defines the set of steps for
an application to be updated in a production environment.

3. PIACERE Approach for Optimized and Self-Healed IaC

In this section, we present the PIACERE position and approach to support DevOps
teams in the optimization and self-healing of the infrastructural elements and the code that
generates these (IaC) in complex distributed cloud continuum environments. The main
envisioned PIACERE components for the optimization and self-healing of IaC are depicted
in Figure 2.
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Each phase of optimization, self-learning, and self-healing provides several advan-
tages both at the pre-deployment and run-time phase of the IaC management. Figure 2
represents the main logical building blocks of the components providing support to each
of the processes, optimization of the IaC, autonomous prediction of malfunctioning on the
IaC (IaC self-learning), and automatic self-recovery mechanism once a failure is detected
or predicted. Each of these logical components is further explained in the subsequent
Sections 3.1–3.3.

3.1. IaC Optimization

As mentioned in Section 2, the optimization problem to be formulated in PIACERE
consists of having a service to be deployed and a catalogue of infrastructural elements, with
the principal challenge of finding an optimized deployment configuration of the IaC on the
appropriate infrastructural elements that best meet the predefined constraints (e.g., types
of infrastructural elements, the fulfillment of the microservices’ NFRs such as location or
availability, and so on).

Arguably, the problem modeled will be of MOO nature, at least, with the positivity
of evolving it to a many-objective one. The system to be deployed should also meet
not only the defined functional requirements but also some optimization related to non-
functional requirements.

In this sense, it is interesting to show here a brief definition of these concepts, which
are crucial for properly designing the solving systems. Regarding functional optimization
requirements, they can be referred to as what the system should do, and it is a concept strictly
related to the main objective the system is built for. Logically, the establishment of these
requirements leads to the building of the objective function, or in the specific MOO case
of PIACERE, objective functions. Regarding non-functional requirements, they can be
defined in different ways. Davis defines them as the required of overall attributes of the system,
including portability, reliability, efficiency, human engineering, testability, understandability, and
modifiability [62]. These non-functional requirements are essential for the proper election of
solving method, and the non-consideration of them can suppose the re-design of the whole
research, involving both economic and time costs.

Having said this and considering that the requirements that should be met in the
PIACERE context will be high-demanding, it is a wise decision to consider the use of a well-
reputed framework that can offer the possibility of implementing and applying different
algorithms of different nature. This framework should be flexible enough not only to use
the algorithms considered but also for adapting, modifying, and merging them, seeking
an ultimate algorithm that can perfectly adapt to the requirements needed in PIACERE.
Furthermore, this framework should be focused on the resolution of optimization problems
considering different objectives, but undoubtedly, it should be oriented to the resolution of
MOO problems.

In this regard, some of the frameworks that will be considered are ECJ, HeuristicLab,
jMEtal, or PlatEMO. Deeming the proven strength of these frameworks, as part of the
PIACERE project, experimentation will be made comparing the performance of algorithms
drawn from some of these platforms. That is, the objective is not just to decide which is the
best algorithm for the use cases but also the most efficient framework to implement it. This
is important in case non-functional requirements change along with the execution of the
project. In this context, a framework that allows a fast adaptation and contains plenty of
efficient algorithms is appreciated.

There could be several reasons for choosing one framework or another. The program-
ing language could be one of these reasons, along with the orientation of the frameworks
on single- or multi-objective optimization problems. The kind of software licenses can also
be crucial for disabling the choice of a particular package.

Once the framework is defined, the algorithm that gives a response to the real-world
optimization should be implemented. In this regard, not only the direct application
of existing algorithms will be conducted. In PIACERE, new solving mechanisms will



Information 2021, 12, 308 12 of 17

be developed and tested, giving special importance to the merging and enhancing of
well-reputed mechanisms. Furthermore, in order to fill the non-functional requirements,
different optimization paradigms will also be considered. More specifically, the adequacy
of research topics such as transfer optimization will be explored. Transfer optimization
is a relatively new knowledge field within the wider area of optimization, whose main
objective is to exploit what has been learned for optimizing one given optimization problem
toward tackling another related or unrelated problem.

Finally, once the solving techniques are developed, different kinds of fine-tuning
procedures will be carried out for improving their performance as much as possible. This
process can be divided into two different steps. The first one is devoted to the proper
optimization of the code, which can be conducted through the application of profiling tools.
Due to these tools, code parts presenting high time consumption can be detected, leading
to their subsequent rewriting. The second step of this fine-tuning process is devoted
to the efficient adjustment of the parameters of the algorithms. This way, the efficacy
can be improved even more. This adjustment can be conducted following two different
approaches: ad-hoc pilot tests and automatic configuration. Due to the nature of PIACERE,
we will embrace the first of these approaches, which is the most employed by researchers
and also the most recommended one when having a high degree of expertise.

3.2. IaC Self-Learning

As is well-known, IaC suffers from trustworthiness aspects, which are often left for
the end of the cycle, for once the code is already in operation, it is already too late. The
errors provoked by abrupt changes, e.g., in the deployment process, may be expensive
to correct, affecting the business continuity of the application. For this reason, PIACERE
adopts a self-learning approach, where these errors (drifts and/or anomalies) will be early
detected, triggering a self-healing mechanism that will optimize the IaC parameters to
adapt to the new situation.

The monitoring system will provide a self-learning module with real-time data (data
streams/time series) composed of many of the informative metrics/variables of the running
operating system such as CPU load, memory occupation, consumed bandwidth, among
many others, with significant discriminative capacity that can provide significant clues.
These metrics will be properly preprocessed so that they can be consumed by the algorithm
without penalty. Then, the self-learning module will be capable of performing incremental
learning by acquiring new knowledge every time a new data instance is received, and it
will be composed of two mechanisms: a drift detector and an anomaly detector. Both are
addressed to guarantee the constant high-level performance of IaC, being decisive to assure
the truthfulness and completeness of the metrics, which will have a substantial impact on
the detection of a drift/anomaly within the Failure/SLA Violation early prediction.

Due to the fact that PIACERE monitoring data have the form of time series, and thus
the temporal dependence is present, we will consider a drift detection strategy based
on [34,63]. As these papers show, the presence of temporal dependence leads us to consider
a different detection approach and a different set of metrics to evaluate the performance
of the drift detector mechanism. These references show us that it is not enough to show
the performance of a change detector working with a classifier, even though a no-change
detector (it is a no-change detector in the sense that it is not detecting the change in the
stream, just outputs change every x instance) can obtain better results than known detectors
of the literature. This is due to the temporal dependence. Finally, it deserves mentioning
that the drift detection in time series is often referred to as “change point detection”.

The cloud-based distributed nature of the PIACERE components, including the large-
scale generated data, will require a distributed approach along with deep learning architec-
ture based on [64,65]. These papers show how to solve anomaly detection challenges in
resource-scarce environments or with the requirement of not being computationally inten-
sive but achieving high detection accuracy and false alarm rates. The applied approaches
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are also able to adapt to new changes in a non-stationary environment, such as the one
present in PIACERE.

Therefore, the self-learning module will warn the self-healing component once risky
conditions are detected and threatening the QoS of the IaC deployment, which will eventu-
ally start up the optimization process aiming at obtaining a new optimal IaC infrastructural
and resource configuration.

3.3. IaC self-Healing

The IaC lifecycle comprises the following stages: infrastructure provisioning, config-
uration management, application deployment, and infrastructure monitoring. The IaC
Self-Healing in PIACERE aspires to cover some of these stages. In particular, the IaC
Executor Manager (IEM) will oversee (1) the infrastructure provisioning, where the initial
set of infrastructural elements defined by the developer will be deployed; (2) the configura-
tion management of the aforementioned elements, where the software requirements and
nuances of all such elements are configured; and (3) the application deployment in which
the application workflow of the different use cases is deployed on the infrastructure. This
process will need to be executed each time the creation of the infrastructural layer is needed,
in the first deployment, or in subsequent redeployments triggered by the self-learning
module once an anomaly has been detected.

All these tasks are time-consuming, not fully automated, and “stage” dependent;
hence, specific tools will be evaluated and selected for each of these stages.

In addition, IEM aspires to minimize the operationalization of heterogeneous appli-
cation workflows and reduce the downtime of such workflows between redeployments.
One of the techniques to achieve these goals is to provide a wide variety of interfaces for
different IaC languages and tools that will assist the use cases during their workflows.
Another technique is to provide an interface for the redeployment and reconfiguration of
the infrastructure, which enables to shortcut the heavyweight and time-consuming process
of tearing down and provisioning the entire ecosystem. This way, only specific pieces of
the architecture will be provisioned, fine-tuned, and deployed, which reduces not only the
total time but also the application downtime when performing these IaC adjustments.

To provide this functionality, it is key to select the appropriate tool for each of the stages
defined above. Some of the particularities that will assist in achieving this overarching goal
are declarative languages and idempotence. The former aids in defining what the final
picture should comprise, but how to reach that state is up to the tool itself, whereas the
latter is a programing principle that promotes that no matter how many times the IaC code
will be executed, the same stage will be reached. Following these two principles guarantees
the maintainability, reusability, and reproducibility of subsequent IEM executions.

As part of the self-healing process, the PIACERE self-healing component plans to
provide, develop, and implement a tool to orchestrate the different actions that need to
be taken once an anomaly or an improvement in the execution environment is detected
by the self-learning module. The events will be classified in order to know what type of
action needs to be executed, as some mitigation actions can imply modifying IaC while
others don’t, thus impacting the decision of which other PIACERE modules to execute.
For example, the criticality of the incidence (predicted versus already happened) and
the need for a complete or partial redeployment of the source causing the event (the
infrastructural element or the container deployed on top of it) may impact the mitigation
action. In this sense, several self-healing activities could be put in place with different
consequences for the system in general and for the IaC in particular: reboot the machine (no
new IaC is needed), vertical (more memory, more disk, more cores, different disks quality,
more network capability) and/or horizontal scalability (adjust Kubernetes deployment
scalability, add node to Kubernetes cluster, new server for a given component, new server
in a different zone), new deployment configuration needed (partial and or complete), etc.

PIACERE will consider the self-recovery from failures or non-compliance of NFRs,
such as the performance of the infrastructural element (i.e., disk, memory, CPU, etc.), the
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cost, or the availability. Furthermore, security events and incidents will also be considered
through on-demand (HTTP/HTTPS endpoints, infrastructure vulnerabilities such as mis-
configurations or CVEs) and continuous (Integrity of system files, Kernel/network activity,
etc.) monitoring. Therefore, PIACERE self-healing component will autonomously decide,
optimize, plan, orchestrate, and execute the proper set of activities to assure a successful
deployment through the requests to the different components. It will include a catalogue of
different strategies that can be applied when moving applications components (i.e., porting
data or stateful components) as well as the implementation of a set of strategies that can be
applied automatically when re-deploying the components and setting up the re-optimized
infrastructural layer. The selection of which strategy will be implemented over another
one will come from the needs and prioritization of the pilots to be supported in PIACERE.

The mitigation actions will be selected from a set of predefined mitigation actions
stored in the knowledge database of the self-healing component, and the subsequent
process will be followed:

1. Classification of the event: Classification of the event detected by the self-learning
component. The events identified can be of different nature for different reasons:

a. Predicted failure vs. already detected failure: available time for the self-
healing process.

b. The main cause of the event: it can be caused by a software failure or by a CSLA
violation in the infrastructural element.

c. Others to be analyzed: NFR affected, components affected, etc.

2. Selection of a self-healing strategy: Based on the initial classification and on the ruleset,
the best self-healing strategy will be selected. This strategy may imply selecting a
new set of infrastructural elements and consequently regenerating the IaC with these
new requirements so that the new deployment schema is realized. In this case, the
self-healing strategy should cover not only the bringing up of the new infrastructural
elements but also the teardown of the previous infrastructure.

3. Orchestration of the self-healing process: Once the strategy is selected, it has to be
executed. The different modules in charge of implementing the self-healing activities
need to be executed properly. In PIACERE, the run-time controller will be responsible
for orchestrating the process, the related tasks, and the relevant components.

4. Conclusions and Future Work

The growth of cloud services in recent years has led to more and more complex
applications that leverage the power and ubiquity of computing capabilities and data in the
cloud. Such applications require, in turn, new approaches for the creation, management,
and operation of the cloud infrastructure, such as IaC.

This article has presented research carried out as part of the PIACERE project that
studies the utilization of AI techniques and methods for the optimization of the operation of
cloud continuum applications and the correspondent infrastructural code or IaC. We have
shown how several processes from the application’s run-time lifecycle can be improved
by the incorporation of optimization techniques, data stream analysis, concept drift, and
anomaly detection methods. We also introduced the concept of self-healed application to
refer to applications that can be self-reactive to anomalies in their run-time.

The novel concepts of the PIACERE IaC optimization, IaC self-learning, and IaC
self-healing are the key findings of the work. The IaC optimization is based on functions
that have to meet functional requirements and optimize non-functional requirements,
solving a MOO problem with the use of reputed frameworks and paradigms as transfer
optimization. The IaC self-learning is based on the early detection of drift and anomalies
in the monitored real-time data streams of the cloud infrastructure, being also capable
of performing incremental learning. Finally, the IaC self-healing, which will be triggered
when such anomalies are detected, is in charge of performing the corrective actions at
run-time to maintain the status of the system within the predefined limits. Actions are
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selected depending on the triggering event and that could imply the deployment of new
optimized infrastructure, thus calling to the IaC optimization and closing the loop.

The research is foreseen to further advance with future steps that will include the struc-
tural and behavioral architectural description of the PIACERE optimization, self-learning,
and self-healing components described in the paper, and also with the development of the
corresponding POCs (proof of concept) or minimum versions of the components that will
serve to validate the presented approach.
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