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ABSTRACT Artificial Neural Networks (ANNs) are weighted directed graphs of interconnected neurons
widely employed to model complex problems. However, the selection of the optimal ANN architecture and
its training parameters is not enough to obtain reliablemodels. The data preprocessing stage is fundamental to
improve the model’s performance. Specifically, Feature Normalisation (FN) is commonly utilised to remove
the features’ magnitude aiming at equalising the features’ contribution to the model training. Nevertheless,
this work demonstrates that the FN method selection affects the model performance. Also, it is well-known
that ANNs are commonly considered a ‘‘black box’’ due to their lack of interpretability. In this sense, several
works aim to analyse the features’ contribution to the network for estimating the output. However, these
methods, specifically those based on network’s weights, like Garson’s or Yoon’s methods, do not consider
preprocessing factors, such as dispersion factors, previously employed to transform the input data. This
work proposes a new features’ relevance analysis method that includes the dispersion factors into the weight
matrix analysis methods to infer each feature’s actual contribution to the network output more precisely.
Besides, in this work, the Proportional Dispersion Weights (PWD) are proposed as explanatory factors of
similarity between models’ performance results. The conclusions from this work improve the understanding
of the features’ contribution to the model that enhances the feature selection strategy, which is fundamental
for reliably modelling a given problem.

INDEX TERMS Artificial neural networks, explainability, feature contribution, feature normalization.

I. INTRODUCTION
Artificial Neural Networks (ANNs) are algorithms that sim-
ulate the human brain learning behaviour, modelled by a
weighted directed graph of interconnected nodes or neurons.
These neurons are simple functions whose arguments are the
weighted summation of the inputs to the node [1]. Due to
their ability to solve challenging computational problems [2],
[3], ANNs are widely applied in different fields, like industry
among others [4]–[8]. However, they are still considered
a ‘‘black box’’ since the network’s predictions cannot be
directly explained. Therefore, in the last decades, there has
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been a surge of interest in explainable Artificial Intelligence
(xAI) approaches [9]. In this line, researchers have shown
an increased claim in understating the features’ contribution
for modelling the network [10]–[12]. As authors in [13]
expound, the goal of feature relevance explanation techniques
is to describe the functioning of a model by measuring each
feature’s influence on the predicted output. Since feature
relevance methods can be viewed as indirect techniques to
explain a model, they have become a vibrant subject of study
in the xAI field [14]–[18].

The understanding of the features’ relevance is essential
not only to explain the features’ contribution to the model
but also to conduct proper Feature Selection (FS) [19]–[21].
FS is traditionally considered a preprocessing technique. It is
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well-known that in data analysis in general, and for ANN in
particular, data preprocessing is one of the essential stages in
the development of a solution, and the choice of preprocess-
ing steps can often have a significant effect on the algorithm’s
performance [22]. In the era of digitalisation, hundreds of fea-
tures from complex systems are usually monitored to extract
valuable knowledge from the data [23]. In order to reduce the
model complexity as well as to save memory and computa-
tional cost, features’ relevance-based FS is commonly applied
[24]–[26]. In some cases, the features’ relevance calculation
is conducted by means of network’s weights-based feature
importance analysis methods [27]–[29].

Along with FS, another commonly employed prepro-
cessing approach is the linear normalisation of the input
features. Feature Normalisation (FN) is often useful if the
features present values that differ significantly in magni-
tude. Each FN method transforms a given dataset differ-
ently. The impact of the FN method’s selection on the
algorithm’s performance has been experimentally studied by
some researchers [30]–[33] to estimate the most appropriate
one for a given problem. However, it remains the extended
approach of employing the min-max normalisation method
before the use of an ANN [34]–[38]. Despite the importance
of data normalisation, no works are found that include the
influence of data normalisation when analysing the features’
contribution to the resultant ANN model.

Thus, this work advances the state-of-the-art by theoret-
ically examining the impact of data normalisation on the
relative contribution of the input features to the ANN and,
ultimately, the algorithm’s performance. For that purpose,
this work presents a new proposal for feature’s contribution
analysis that extends Garson’s and Yoon’s methods to include
the normalisation influence when estimating the features’
contribution to the ANN. The theoretical conclusions are also
experimentally validated.

Section II describes the ANN-basedmodels and Section III
presents the formulation of FN. In Section IV the Garson’s
and Yoon’s traditional features’ relevance analysis methods
based onweight matrix analysis (Section IV-A) are presented,
and Section IV-B describes a new proposal for the adaptation
of these methods to include the dispersion factors in the com-
putation of the feature’s contribution. Section V describes the
employed well-known datasets from UCI repository [39] and
argues the proposed methods of this work. The experimen-
tal results of the analysis are collected in Section VI; and
a discussion and proposal of future work are described in
Section VII. Finally, Section VIII collects the conclusion of
the work.

II. ARTIFICIAL NEURAL NETWORKS
An Artificial Neural Network is a weighted directed graph of
interconnected neurons that propagates data from the input
layer to the output layer by transforming such data to obtain
valuable information for modelling a problem. A neuron
receives the weighted values from the neurons of the pre-
vious layer. In the neuron, the sum of the weighted values

is computed and employed as the argument of an activation
function ϕ : R −→ R; being the identity ϕ(x) = x
the simplest one. The ANN architecture is flexible in the
number of hidden layers and neurons per layer. The higher
the number of hidden layers and the neurons that compose
them, the higher the model complexity.

In this work, the network’s layers are represented by h ∈
{0, 1, . . . ,H ,H + 1}, where H is the number of hidden
layers, and h = 0 and h = H + 1 symbolise the input and
output layers, respectively. The number of neurons in the h-th
hidden layer is denoted by nh. Note that n0 = m is equal to
the number of features, and for the single output problems,
nH+1 = 1. The matrix weight of the edges that connect the
neurons of the h−1 layer with the neurons of the h-th layer is
W h
∈ Rnh−1×nh , and bh represents the bias of the h-th layer.

Then, the mathematical formulation of an ANN-based model
is:

Y = ϕ
(
. . . ϕ

(
X ·W (1)

+ b1
)
. . .W (H+1)

+ bH+1
)

(1)

For ϕ(x) = x, (1) can be rewritten as

Ŷ = X ·

(
H+1∏
h=1

W h

)
+ cte = X ·W+ cte. (2)

For the single output problem, W is a vector of length m,
where the entry j ∈ {1, . . . ,m} represents the total weight the
network assigns to the j-th feature.

From (1), and especially, when the activation function is
the identity as in (2), the ANN’s weights are the fundamental
parameters that relate the input data with the estimated output.
The ANNweights, along with the bias, are iteratively updated
during the training phase of the model to obtain Ŷ ≈ Y .
However, for reaching so, not only the parameters training is
determinant but also the quality of the input data. As authors
in [40] remark, input data must be provided in the amount,
structure and format that suits the data mining task. Besides,
in order to avoid that the measurement unit affects the data
mining task, all the features should be expressed in the same
measurement units with a common scale or range. Feature
Normalisation (FN) attempts to equalise the features’ magni-
tude, and it is also employed to speed up the learning process
in ANNs, helping the weights converge faster.

III. FEATURE NORMALIZATION
FN is a preprocessing techniquewidely employed to avoid the
magnitude differences between the features of a given dataset.
Any statistical-based FN method can be expressed as

X̃ =
X − pos(X )
dis(X )

(3)

Equation (3) transforms a given dataset X into a nor-
malised one X̃ based on pos(X ) and dis(X ); pos(X ) refers
to the position or central tendency statistic vector,1 whereas

1For the sake of brevity, the vector composed by position or central
tendency statistic is referred as position statistic from now on.
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dis(X ) is the dispersion statistic vector which scales the fea-
tures.

Equation (4) defines the decimal notation proposed to
highlight the magnitude factors of each feature.

xij = sign(xij) 0.d1d2d3 . . . · 10nj = x̂ij · 10nj (4)

In (4), d1, d2, d3, . . . ∈ {0, 1, . . . , 9} and nj ∈ Z is fixed in
such a way that ∀j, |nj| is the minimum number which fulfils:
Xj = X̂j · 10nj , and max|X̂j| < 1. Then, ∀i, j, |x̂ij| < 1, and
10nj represents the magnitude factor of each feature. With the
defined decimal notation, and since the statistical factors are
estimated by linear operations, pos(Xj) = pos(X̂j) · 10nj and
dis(Xj) = dis(X̂j) · 10nj ; FN can be re-written as

X̃j =
X̂j · 10nj − pos(X̂j) · 10nj

dis(X̂j) · 10nj
=
X̂j − pos(X̂j)

dis(X̂j)
(5)

Equation (5) shows that the magnitude factors in the nor-
malised dataset disappear. This is the main reason why,
as aforementioned in Section II, FN is widely employed to
equalise the magnitude of the features. However, as a conse-
quence of FN, each feature j is scaled by a dispersion factor
dis(X̂j) dependant on its values distribution.

Note that the normalised features present a dispersion
equal to 1 in terms of the dispersion factor employed to
transform the dataset. But, in order to fulfil dis(X̃j) = 1
each feature X̂j is differently expanded or compressed. Thus,
the higher the value of dis(X̂j), the higher the level of com-
pression a feature undergoes, and consequently, the lower
the contribution weight on the ML algorithm. Analogously,
the lower the value of dis(X̂j), the higher the expansion of
X̂j, and the higher the expected contribution to the model.
Thus, the inverse of the dispersion factors can be viewed as
unsupervised feature weights. In fact, in the ANN’s first layer,
the network’s weights are multiplied by the normalisation
weights, so the first layer’s resulting weights are dis(X̂j)−1 ·
W 0
j ∀j ∈ {1, . . . ,m}. Then, since the dispersion factors act

as weights along with the network’s weights, it conditions
the model performance and the features’ contribution to the
model.

IV. FEATURE RELEVANCE ANALYSIS METHODS
ANN-based models are considered a ‘‘black box’’ since the
network’s predictions cannot be directly explained. There-
fore, several approaches to understand the features’ con-
tribution for modelling the network have been proposed.
Some features’ relevance analyses for ANN-based problems
rely on the network’s Weights Matrix Analysis (WMA) to
estimate the features’ contribution to the model. In this
Section, first, the well-known Garson’s and Yoon’s methods
are described. Next, a novel approach that considers the
network’s weights and the dispersion factors is proposed.

A. FEATURE RELEVANCE ANALYSIS METHODS BASED ON
NETWORK’s WEIGHT MATRIX
In order to understand the features’ contribution to the model,
WMAmethods are usually employed. These methods, which

belong to the features’ relevance explanation techniques,
calculate the features’ contribution based on the network’s
weights related to each feature. Among the WMA methods,
Garson’s [41], and Yoon’s methods [42] are well-known.
They compute the features’ contribution values as defined in
(6) and (7), respectively.

Garsonj =
|
∏H+1

h=1 W
h
|j∑m

j=1 |
∏H+1

h=1 W
h|
=

|Wj|∑m
j=1 |Wj|

∈ [0, 1] (6)

Yoonj =
(
∏H+1

h=1 W
h)j∑m

j=1 |
∏H+1

h=1 W
h|
=

Wj∑m
j=1 |Wj|

∈ [−1, 1]

(7)

Similarly to other features’ relevance explanation tech-
niques, it is considered that the higher the Garsonj or Yoonj
value is, the higher the features’ contribution to the network.

Note that the preprocessed features implicitly influence
the contribution values estimated by Garson’s and Yoon’s
methods in the sense that the weights have been obtained
from the training process with the preprocessed features (and
not the raw features). In order to calculate more precisely
the real feature’s contribution to the model, a novel method
that explicitly and formally considers the dispersion factors
in addition to the network’s weights is presented.

B. FEATURE RELEVANCE ANALYSIS METHODS BASED ON
NETWORK’s WEIGHT MATRIX AND DISPERSION FACTORS:
A NEW PROPOSAL FOR THE ADAPTATION OF GARSON’s
AND YOON’s METHODS
Despite data preprocessing –and hence FN– is considered
essential to obtain quality results, until the date, no works
that analyse the preprocessing stage impact for estimating the
features’ influence on the ANN-based model are found. This
work aims to advance the state-of-the-art by including the
dispersion factors in the features’ contribution estimation.

Equation (2) can be viewed as the formula for Ŷ estimation
given a dataset X . However, before ANN employment, ∀j ∈
{1, . . . ,m}Xj is usually transformed by a statistical-based
normalisation method. Then, from (2) and (5), the mathe-
matical formulation of an ANN-based model trained with a
normalised dataset X̃ can be re-defined as:

Ŷ = X̃ ·

(
H∏
h=1

W h

)
+ cte = X · D ·

(
H∏
h=1

W h

)
+ cte (8)

where D = diag dis(X1)−1 , · · · , dis(Xm)−1 is the diagonal
matrix, and the elements Djj correspond to the inverse of the
dispersion factor of the j-th feature. Equation (8) illustrates
that the dispersion factors, in addition to the weight matrix,
influence the features’ contribution to the model. Conse-
quently, in order to estimate the true impact of a given feature
on the model, this work proposes to include the dispersion
factors in Garson’s and Yoon’s methods for the features’
influence calculations as follows:

Ĝarsonj =
(D · |W|)j∑m
j=1 |(D ·W)j|

∈ [0, 1] (9)

125464 VOLUME 9, 2021



I. Niño-Adan et al.: Normalization Influence on ANN-Based Models Performance

Ŷoonj =
(D ·W)j∑m
j=1 |(D ·W)j|

∈ [−1, 1] (10)

As described in Section IV-A, the higher the value of
Wj, the higher the j-th feature’s contribution to the network.
Similarly, by interpreting the inverse of the dispersion as
unsupervised weights, as stated in Section III, the higher
the value of dis(Xj)−1, the higher the contribution of such
feature to the model. Thus, the same rationale can be applied
to dis(Xj)−1 · |Wj|.

V. MATERIALS AND METHODS
This Section describes the procedure employed to experi-
mentally analyse and validate that the FN method selection
influences the ANN-based model performance and hence,
justify the inclusion of the dispersion factors in the features’
contribution estimation. Given the experimental analysis and
validation, Fig. 1 shows the high-level diagram of 1) the
data split and preprocessing and 2) the ANN-based model
training and evaluation conducted in this work. The ele-
ments employed in the following Sections to evaluate the FN
influence on the ANN-based models are highlighted with a
magnifying glass symbol. Note that Section III demonstrates
that the magnitude factors disappear when normalising the
features. Consequently, from now on X̂ (4) is employed.

A. DATASETS
In order to validate the hypothesis presented in Section IV-B,
four public available real use cases from UCI repository [39]
are employed.

TABLE 1. Description of datasets from UCI repository utilized in this work.

Table 1 summarises the utilised datasets. This work is
focused on regression problems; then, the four datasets have
continuous output values. Both NOX and CO datasets utilise
the same input data. However, NOX dataset aims at estimat-
ing the Nitrogen oxides (NOx) emission from a gas turbine,
while for CO the Carbon monoxide (CO) emission of the
same gas turbine is registered.

B. DATA PREPARATION, ANN-BASED MODEL TRAINING,
AND EVALUATION METRICS
The first step consists in preparing a given dataset to obtain
the train/test subsets and normalise the data. Then, the
ANN-basedmodel is trainedwith the preprocessed data. Each
step of Fig. 1 and the primarymetrics employed to analyse the
obtained results are next described.

FIGURE 1. High-level diagram of the proposed method for data
preprocessing, and ANN-based model train and evaluation.

1) DATASET SPLIT INTO TRAIN AND TEST SETS
A given dataset X ∈ Rn×m composed by n samples described
by m features and the associated real labels Y ∈ Rn are
split into train (X_train, Y_train) and test (X_test , Y_test)
disjoint sets of ntrain = 0.7 · n, and ntest = n − ntrain
samples, respectively. The training set is employed to adjust
the model’s parameters (weights and bias), while the test set
is utilised to validate the model’s performance.

2) NORMALIZATION METHODS
In order to validate the impact of the FN method selection
on the network, three well-known normalisation methods are
employed in this work. Table 2 presents the selected nor-
malisation methods and the statistical position and dispersion
factors utilised to transform the features.

Each normalisation method from Table 2 utilises different
position and dispersion statistics to transform the features
of a given dataset. More concretely, ST, MM and MAD
compress or expand each feature based on its standard
deviation σ , range, and median absolute deviation mad dis-
persion statistics, respectively. Thus, ST and MAD calculate
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TABLE 2. Normalization methods selected in this work for the analysis
and validation of the proposal.

the dispersion of the features’ samples around the mean
and median values, respectively. In contrast, MM computes
the statistical factors considering the extreme values of the
features.

The FN methods from Table 2 are employed as follows:
for each normalisation method ∗ ∈ {ST ,MM ,MAD} =
Norm the statistical factors are calculated from X_train as
described in (3). Then, they are applied to X_train and X_test
to create train X_train∗ and test X_test∗ datasets. Thus, from
a given dataset X , a normalised dataset X̃∗ is obtained for
each ∗ ∈ Norm.

Independently of the FN method utilised to transform the
input features, the output label is normalised with MM. The
only difference between the analysed models is the normal-
isation method utilised for the input data transformation.
Then, min(Y_train) and range(Y_train) values are utilised in
(3) to calculate Y_train, Y_test .

3) ANN TRAINING STRATEGY FOR THE ANALYSIS OF THE
NORMALISATION INFLUENCE
In this work, for each normalised dataset, an ANN with one
hidden layer composed of three hidden neurons ([m−3−1]) is
utilised. The neurons of the hidden and output layers are acti-
vated with the identity function. Amaximum of 300 iterations
is set, and the training stops if no improvement is observed
for 10 iterations. The network’s weights are initialised with
Xavier’s method [46], and MC = 50 random initialisations
are utilised for each normalised dataset. In this way, for each
initialisation, s ∈ {1, . . . ,MC}, the networks trained with
each X̃∗ employ the same initial network’s weights.

The ANN is trained with X_train∗ searching for the opti-
mal weights and bias values that obtain, for each initialisation,
Ŷ_train∗s ≈ Y_train. From each trained network, the esti-
mated outputs Ŷ_train∗s and Ŷ_test∗s are calculated and
re-scaled with the statistical factors of Y_train into the
original units, obtaining Ŷ_train∗s and Ŷ_test∗s . Besides, ∀s,
the network’s weight vectorWs is saved for further analyses.

4) METRICS FOR INFERRING THE
NORMALISATION INFLUENCE
The main goal of this work is to validate the impact of the
FN method selection influence on the model’s performance
and the adequacy of employing dispersion factors, in addition
to the network’s weight vector, to infer the features’ contri-
bution appropriately. For doing so, (1) the estimated outputs
Ŷ_train∗s and Ŷ_test∗s ; (2) the statistical dispersion factors
dis(Xj); and (3) the weight vector W∗s obtained from the
trained models are analysed primarily based on the following
metrics.

- Kendall’s τ correlation coefficient [47] measures the
degree of similarity between two ranks assigned to the same
set of objects, i.e. paired rankings. Kendall’s τ ranges from
-1 to 1. A τ = 0 indicates the non-relationship between
the two rankings. If τ = −1, a ranking is the inverse of the
other, while τ = 1 when both rankings are the same. Then,
the higher the value of τ , the higher the ranks similarity.

- Distance is a key concept in many statistical and pattern
recognitionmethodswhichmeasures the closeness or similar-
ity between two objects. The Euclidean distance Ed between
two vectors a,b is defined as Ed (a,b) =

√∑m
j=1(aj − bj)2,

and it is equal to 0 if the components of both vectors are the
same. The higher Ed , the higher the dissimilarity between the
components of the vectors. Although Ed is scale dependant,
in this work, it is applied to vectors with components ranging
from 0 to 1.

- Performance measures are utilised to analyse the
error or the similarity between two output features ya, yb
of length n. In this work, the mean absolute error (MAE),
the root mean squared error (RMSE) and the coefficient
of determination (R2) regression performance measures
are employed. MAE(ya, yb) = (1/n)

∑n
i=1 |yai , ybi | and

RMSE(ya, yb) = (1/n)
√∑n

i=1(yai , ybi )2 measures the error
as the mean absolute and the mean square quadratic differ-
ences between the elements of both output features, respec-
tively. Thus, the lower theMAE and RMSE values, the higher
the similarity between ya and yb. In contrast, R2(ya, yb) =
1−

(∑m
i=1(yai − ybi )

2/
∑m

i=1(yai − ya)
2
)
is a statistical mea-

sure of how well the regression predictions yb approximate
points of ya. R2 takes values up to 1. Values of R2 lower than
0 appear when the model fits the data worse than a horizontal
hyper-plane, while R2

= 1 indicates that the regression
predictions perfectly fit the data. Then, the higher the R2,
the higher the similarity between ya and yb.

C. ANALYSIS OF THE NORMALIZATION INFLUENCE ON
THE MODEL’s PERFORMANCE
The first analysis aims to verify that the model’s performance
varies depending on the selected FN method. In particu-
lar, the analysis lies in 1) studying the differences between
the outputs predicted by the models trained with the differ-
ently normalised datasets and 2) comparing the ANN-based
models’ performance depending on the FN method.

1) DIFFERENCE BETWEEN THE PREDICTIONS ESTIMATED BY
THE DIFFERENT MODELS
In order to analyse the difference between the predictions
estimated by the different models, for each s ∈ {1, . . . ,MC}
the MAE, RMSE and R2 between Ŷ_train∗s and Ŷ_train+s
and between Ŷ_test∗s and Ŷ_test+s for ∗ 6= + ∈ Norm are
calculated, and the maximum, mean, minimum and standard
deviation (std) values are computed for MC initialisations.
If the selection of the FN method does not influence the
model’s performance, then MAE = RMSE = 0 and R2

= 1.
Otherwise, differences between the estimated outputs would
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demonstrate the influence on the model’s performance of the
FN methods.

2) ANN PREDICTION PERFORMANCE DEPENDING
ON THE FN METHOD
Complementary, in order to analyse the ANN prediction
performance depending on the FN method, for each random
initialisation, MAE, RMSE and R2 between Ŷ_train∗s and
Ŷ_train, and Ŷ_test∗s and Ŷ_test are calculated together with
the maximum, mean, minimum and std values estimated
for the MC initialisations. Similarly, if the normalisation
method selection does not affect the model’s performance,
the same MAE, RMSE and R2 statistical values are expected
independently from the FN method employed when trans-
forming the data. In contrast, differences in the estimated
performance would also demonstrate the hypothesis of this
work.

Complementary, the non-parametric Wilcoxon signed-
rank test [48] is employed to check the existence of
statistical differences between RMSE(Y_train,Y_train∗)
and RMSE(Y_train,Y_train+), or between RMSE(Y_test,
Y_test∗) and RMSE(Y_test,Y_test+) for ∗ 6= + ∈

Norm. In Wilcoxon signed-rank test, the same subjects
are evaluated under two different conditions. In this case,
each subject is the model with the s-th random initial-
isation of the weights, and the different conditions are
the FN methods ∗ 6= + ∈ Norm utilised to trans-
form the network’s input features. The null hypothesis
H0 of Wilcoxon signed-rank test assumes that the related
samples [RMSE(Y_train,Y_train∗1), . . . ,RMSE(Y_train,
Y_train∗MC )] and [RMSE(Y_train,Y_train

+

1 ), . . . ,RMSE(Y_
train,Y_train+MC )] come from the same population, i.e,
the distribution of differences has a median of zero. The test’s
p-values are calculated and, if p-value< 0.05, H0 is rejected
with a significant level of 5%.

D. ANALYSIS OF THE DISPERSION FACTORS AS
EXPLANATORY FACTORS OF THE VARIATIONS
IN MODEL’s PERFORMANCE
Each FN method collected in Table 2 employs different dis-
persion statistics or factors to transform the input features.
Then, as stated in Section III, it is expected that each FN
method ∗ ∈ Norm transforms differently a given dataset,
which ultimately conditions the features’ contribution values
and, consequently, the ANN-based model’s performance.
Once verified that FN methods impact the model’s perfor-
mance, the dispersion factors are analysed as explanatory
factors of such variations. It is assumed that a relationship
exists between the results in the ANN-based model per-
formance and the dispersion factors. Thus, the higher the
differences between the dispersion factors, the higher the
difference between the output estimations and the weight
vector of the models trained with different X̃∗. The analysis
of the dispersion factors as explanatory factors is conducted
as follows:

1) ANALYSIS OF PROPORTIONAL DISPERSION FACTORS
In this work, first, ∀∗ ∈ Norm the scaling dispersion factors
w∗j = 1/dis∗(Xj), specifically, their Proportional Dispersion
Weight (PDW) estimated as ŵ∗j = w∗j /

∑m
j=1 w

∗
j are analysed.

In order to infer the expected similarity between X̃∗ and
X̃+ for ∗ 6= + ∈ Norm, the Kendall’s τ correlation and
the Euclidean distance between ŵ∗j and ŵ

+

j are calculated to
evaluate the similarity between the PDWs employed to create
the different normalised datasets.

2) SIMILARITY BETWEEN PDW AND
PERFORMANCE RESULTS
Once estimated the PDWs for each normalisation method,
the level of similarity between the dispersion factors are
compared accordingly with the level of similarity between the
model’s performance reached from Section V-C2 by differ-
ently normalised datasets. The coherence between both will
allow setting the dispersion factors as explanatory factors of
the variations in the model’s performance.

E. ANALYSIS OF THE NORMALISATION INFLUENCE ON
THE FEATURES’ CONTRIBUTION
As described in Section II, Garson’s and Yoon’s methods are
based on the network’s weights to estimate the contribution
of each feature in the model. From (6) and (7) it is observed
that the main difference in the resulting features’ contribution
values is due to the direction, so, for the sake of brevity, from
now, only Garson’s method is considered.

Thus, G∗ and Ĝ∗ represent the features’ contribution val-
ues calculated with the traditional and the adapted Garson’s
methods, respectively. ∗ ∈ Norm refers to the FN method
employed to obtain the X_train∗, so as the weight vectors
W∗ from (6) and D∗ ·W∗ from (9) can be computed. Then,
for each ∗, MC networks with different initial weights are
trained, and G∗s and Ĝ

∗
s are finally computed.

Once analysed the FN method selection influence on the
model’s performance and the relationship between the PDWs
and the estimated outputs, this Section studies the impact of
FN on the features’ contribution values and the adequacy of
the proposed adapted Garson’s method to calculate the real
features’ influence. For doing so, first, an analysis of the fea-
tures’ contribution values in terms of the traditional and the
adapted Garson’s method is conducted. Then, a comparison
with the results from Sections V-C and V-D is performed.
Finally, a Feature Selection strategy is applied in order to
demonstrate the superiority of the proposed adapted Garson’s
method for estimating the real features’ contribution.

1) MEAN FEATURES CONTRIBUTION
In order to analyse the FN method selection impact on the
features’ influence on the network, the mean features’ con-
tribution values resulting from the MC random initialisation
based on the traditional G

∗
= (1/MC)

∑MC
s=1 G

∗
s and on

the proposed adapted Garson’s method Ĝ
∗

are calculated and
analysed considering the steps described below.
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a: TRADITIONAL GARSON’s METHOD
First, the differences between the weight matrix-based fea-
tures contribution derived from the selection of the FN
method is analysed. In order to inspect the G

∗

j values dis-
tribution and the discriminative influence of the j-th feature:
1) the difference between the maximum and the minimum,
and 2) the standard deviation of the features’ contribution
values are calculated. Then, aiming at examining the effect
of FN in the features’ influence on the model, a pairwise
comparison between G

∗
and G

+
with ∗ 6= + is conducted

in terms of Kendall’s τ correlation coefficient and Euclidean
distance.

b: PROPOSED ADAPTED GARSON’s METHOD
The same analysis is performed over Ĝ

∗

to inspect the
features’ contribution computed with the adapted Garson’s
method.

c: COMPARISON BETWEEN THE TRADITIONAL AND THE
PROPOSED ADAPTED GARSON’s METHOD
Finally, with the aim of inferring the validity of the pro-
posed adapted Garson’s method to estimate the real features’

contribution, first, a comparison between G
∗
and Ĝ

∗

is per-
formed. Then, the results from Sections V-C2 and V-D are
here utilised to infer from the correspondence between the
models’ performance, the dispersion factors and the features’
relevance analysis methods the superiority of the proposed
adapted Garson’s method.

2) FEATURE SELECTION BASED ON THE
FEATURES’ CONTRIBUTION
In order to demonstrate the superiority of the proposed
adapted Garson’s method, a FS strategy is conducted to
analyse the effect of removing features considering the tradi-
tional Garson’s method versus the proposed adapted one. The
estimated features’ contribution values from the models that
obtain the lowest RMSE are employed for this strategy. Then,
for each ∗ ∈ Norm, the feature’ influence values calculated
with the traditional Garson’s method are denoted asG∗, while
the estimated with the proposed one are referred to as Ĝ

∗
.

The FS based on the features’ contribution values computed
with the traditional or the proposed Garson’s methods (fC ∈
{G∗, Ĝ

∗
}) is applied as described in Algorithm 1.

VI. EXPERIMENTAL VALIDATION
This Section shows the experimental results obtained from
training and testing the ANN architecture presented in
Section V-B3. More concretely, first, the influence of the
FN methods on the models’ performance is studied. Next,
an analysis of the proportional dispersion weights as explana-
tory factors of the estimated outputs is presented. Finally,
the impact of FN on the features’ contribution is demon-
strated, and the superiority of the proposed adapted Garson’s
method is validated.

Algorithm 1 Feature Selection Strategy

1: for fC ∈ {G∗, Ĝ
∗
} do

2: for ite ∈ {1, . . . ,m− 1} do
3: Remove the ite features with lowest fC value.
4: Train the network, estimate the output and re-scale

it to the original units.
5: Estimate the RMSE between the real labels and the

estimated ones.
6: end for
7: end for
8: Plot the RMSE values estimated based on G∗, and Ĝ

∗

jointly with the RMSE estimated with all the features to
analyse the effect of the feature removal.

A. ANALYSIS OF THE NORMALISATION INFLUENCE ON
THE MODEL’s PERFORMANCE
As described in Section V-C, an analysis of the dissimilarity
between the outputs estimated by the models trained with
differently normalised datasets is conducted. Note that ∀∗ ∈
Norm, the same 50 random initialisations establish the initial
weights of the ANN. Thus, the only differences when training
the models are the FN methods utilised to transform the input
features.

1) DIFFERENCE BETWEEN THE PREDICTIONS ESTIMATED BY
THE DIFFERENT MODELS
First, the comparison between the estimated outputs obtained
from the differently normalised datasets is conducted.

Table 3 collects for each dataset the maximum, mean, min-
imum and standard deviation of MAE, RMSE and R2 values
from comparing the estimated Ŷ_train∗ with Ŷ_train+ and
Ŷ_test∗ with Ŷ_test+ for ∗ 6= + ∈ Norm. Given that similar
results are obtained from train and test sets, for sake of brevity
only the results from the training set are described. From the
calculated scores presented in Tables 3a to 3d variations in the
estimated outputs derived from the FN method selection can
be inferred. In News, NOX and CO datasets the mean MAE
is up to 1021.831, 0.363 and 1.547, respectively. Similarly,
the mean RMSE(Ŷ_train∗, Ŷ_train+) values obtained are
higher than 0.28, 1.21, and 86.41, respectively. In the case
of CBM dataset, the RMSE vales are close to zero. How-
ever, in Table 3a, the mean R2 values are lower than 0.605
when comparing Y_trainMM with Y_trainST or Y_trainMAD,
respectively. Then, from Table 3 it is concluded that the
predictions considerably vary depending on the FN method
selected for the feature preprocessing phase.

2) COMPARISON BETWEEN THE MODELS’
PERFORMANCE SCORES
As demonstrated above, different outputs are obtained from
the models trained with differently normalised data. As an
example, Fig. 2 depicts the Y_test and Y_test∗ obtained for
∗ ∈ Norm from the NOX dataset.
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TABLE 3. Comparison between the estimated outputs Ŷ ∗, Ŷ+ for
∗ 6= + ∈ Norm in terms of MAE, RMSE and R2.

As Fig. 2 shows, the Y_test∗ values do not match the
real labels, and their values considerably differ depending
on the FN method. For instance, in the zoomed subplot for
sample number 1813, the estimated output for MM is more
than 3 units lower than the estimated with ST and MAD; so
differences in the performance of the models trained with the
different normalised sets are expected.

Next, the model’s performance of each selected dataset is
analysed as aforementioned in Section V-C. Table 4 collects
for ∗ ∈ Norm the maximum, mean, minimum and stan-
dard deviation of MAE, RMSE and R2 values calculated for
Ŷ_train∗s with respect to Y_train, and for Ŷ_test

∗ with respect
to Y_test . Note that the models obtain similar performance
results for train and test sets, and since this work does not aim
to analyse the models’ generalisation ability, only the results
over the train set are described.

As inferred from Table 3, and as Table 4 shows, FNmethod
selection affects the model’s performance. For instance, for
News dataset (Table 4b), depending on ∗ ∈ Norm, there

FIGURE 2. NOX.

is a difference up to 29.928 and 40.225 in terms of mean
MAE and RMSE, respectively. For the rest of datasets regard-
ing ∗, the differences in terms of mean MAE or RMSE are
lower than 0.1. However, in the case of the CBM dataset,
the 0.002 of increment in the error depending the FN method
corresponds to 8% of the original range of the real output
(Table 1). Nevertheless, although the models’ performance
differences in Tables 4a, 4c and 4d may not seem significant,
notice that Table 3 shows considerable differences between
the models’ outputs. Then, in order to complement the con-
clusions derived from Table 4, Table 5 collects the p-values
obtained with the Wilcoxon signed-rank test for assessing
significant differences in the model’s performance regarding
the FN method with which the training and test sets are
normalised.

The null hypothesis H0, which states no statistical
differences in the model’s performance –in terms of
RMSE– derived from the FN method selection, can be
rejected in 17 out of 24 performed tests with a significance
level of 5%. These 17 p-values, that represent the 70.833% of
the p-values collected in Table 5, are remarked with bold text.
In the rest of the cases (ST with respect to MM for News in
the test set, and in both train and test sets for CBM in ST with
respect to MAD, and MM with respect to ST and MAD of
CO datasets), there is no evidence for rejecting H0. However,
Table 3b for the News dataset shows that themean±std values
of RMSE(Ŷ_testST , Ŷ_testMM ) estimated from the 50 ran-
dom initialisation is 48.018± 140.604 (more than 6% of the
range of the real labels of the dataset in Table 1). Similarly, for
train and test sets, the mean±std values depicted in Table 3d
when comparing the RMSE of the outputs estimated for CO
dataset normalised with MM with respect to ST or MAD
are 0.25 ± 0.14 and 0.28 ± 0.15, respectively (around 1%
of the range of the real labels in Table 1). Then, although
in the mentioned cases there is no evidence for rejecting
H0, with the calculated statistics, significant differences are
inferred when the estimated outputs obtained by different ∗
are straightly compared.

All in all, it can be concluded that the selection of a
normalisation method for the preprocessing phase results in
significant differences in the model’s performance.
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TABLE 4. Maximum, mean, minimum and standard deviation of MAE,
RMSE and R2 values for comparing the real label Y and the estimated
one Ŷ ∗ for each of the 50 random initializations and for each ∗ ∈ Norm.

TABLE 5. P-values obtained from Wilcoxon signed-rank test.

B. ANALYSIS OF THE DISPERSION FACTORS AS
EXPLANATORY FACTORS
As explained in Section II the network’s weights adjust the
features’ contribution in order to create a model that estimates
Ŷ ≈ Y . Nevertheless, the hypothesis of this work is that the
dispersion factors influence the model’s training, and conse-
quently, the model’s performance. The former hypothesis has
been validated in SectionVI-A. In order to study the influence
of the FN method selection, first, an analysis and comparison
of the proportional dispersion weights estimated by different

FNmethods are conducted. Then, an analysis of the similarity
of these factors and the output estimations over the differently
normalised datasets is performed.

FIGURE 3. Proportional dispersion weights (PDW) ŵ∗ for ∗ ∈ Norm.

1) ANALYSIS OF THE PROPORTIONAL DISPERSION FACTORS
Fig. 3 shows for each dataset and for ∗ ∈ Norm, the pro-
portional dispersion weights ŵ∗j estimated for each feature.
In Fig. 3c for News dataset, especially in features 2, 3, 4,
44 and 45, it is observed that ŵ∗j significantly differs depend-
ing on the normalisation method employed. In fact, in News
dataset, ∀∗ ∈ Norm, feature 3 obtains the highest PDW, but
ŵST3 takes values closer to ŵMM3 than to ŵMAD3 . In contrast,
for CBM, NOX and CO datasets, ŵSTj and ŵMADj present the
most similar values.

In order to conduct the pairwise comparison between the
dispersion factors, Fig. 4 depicts the absolute difference
between ŵ∗j and ŵ

+

j for ∗ 6= + ∈ Norm.
Fig. 4c clearly shows that in News dataset |ŵSTj −

ŵMMj | < |ŵ
ST
j − ŵMADj | for j ∈ {3, 44, 45}; while for j ∈

{6, 18, 19, 24, 58} the minimum |ŵ∗j − ŵ+j | is reached with
MM andMAD. In contrast, ŵST and ŵMAD present the lowest
absolute differences in Figs. 4a and 4b.

Table 6 describes the similarity between ŵ∗j and ŵ+j for
∗ 6= + ∈ Norm in terms of Kendall’s τ correlation and
Euclidean distance.

For News dataset, τ (ŵST , ŵMM ) and τ (ŵMM , ŵMAD) val-
ues from Table 6a are far from 1, demonstrating that each
feature’s position in the rank derived from ŵ∗ significantly
varies depending on ∗ ∈ Norm. When comparing ŵMM

with ŵST or ŵMAD in CBM dataset, or ŵST with ŵMAD in
News dataset, τ ranges between 0.818 and 0.889. So, minor
PDWs’ rank variations can be found depending on ∗ ∈ Norm.
The only case in which the proportional dispersion weights’
ranking does not vary depending on ∗ is observed in
NOX or CO datasets. However, if the Euclidean distance
between PDW values is analysed, it can be concluded that
there are differences between the proportional estimated val-
ues with ST or MAD respect to the obtained with MM,
from which differences in the network’s performance can be
foreseen.
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FIGURE 4. Absolute differences between the proportional dispersion
weights |ŵ∗ − ŵ+| for ∗ 6= + ∈ Norm.

TABLE 6. Similitude analysis between the proportional dispersion
weights ŵ∗, ŵ+ for ∗ 6= + ∈ Norm.

2) SIMILARITY BETWEEN PDW AND
PERFORMANCE RESULTS
Next, an analysis of ŵ∗ as explanatory factors of the similari-
ties between the model’s performance obtained by the dataset
normalised by different FN methods is conducted.

According to Fig. 3c and Table 6, for News dataset,
ŵST and ŵMM are the most similar PDWs. These results
match with those from Table 3b were the lowest MAE and
RMSE and highest R2 result from juxtaposing Ŷ_trainST

with Ŷ_trainMM ; while the mean R2 value obtained when
comparing MAD with ST or MM is lower than −64.589.
Besides, Tables 6a and 6b show that the lowest τ and the
highest Ed values are obtained when examining the PDW
of News datasets. Similarly, Table 4b presents the highest
differences between the model’s performance resulting from
the different FN methods (up to 40.225 and 34.211 in terms
of mean RMSE).

Similarly, for CBM dataset, the Kendall’s τ in Table 6 is
lower than 0.9 when comparing the ranks of ŵST or ŵMAD

respect to ŵMM . Consequently, in Table 3a the mean R2 is
0.6 and −0.324 for the mentioned cases, respectively.
In contrast, ŵST and ŵMAD are the most similar PDWs

for CBM, NOX and CO datasets (Fig. 3 and Table 6). Sim-
ilarly, in Tables 3a, 3c and 3d the lowest mean MAE and
RMSE values are obtained when comparing Ŷ_trainST with
Ŷ_trainMAD. In fact, in NOX and CO datasets, the meanMAE
and RMSE errors between the outputs estimated with MM
respect to the calculated ones with ST or MAD are more
than 3.2 times higher than the resulting from comparing ST
and MAD. Besides, for these two datasets, τ (ŵ∗, ŵ+) =
1 (see Table 6), which explains that in Tables 3c and 3d
the mean R2(Ŷ_train∗, Ŷ_train+) are higher than 0.94 for
∗ 6= + ∈ Norm.

All in all, it is demonstrated that the higher the similarity
between ŵ∗ and ŵ+ for ∗ 6= + ∈ Norm, the lower the

difference expected between the output estimations resulting
from the dataset normalised with ∗ and +. Thus, in order
to select among different FN methods the suitable one for
the problem at hand, by knowing in advance the similar-
ity between ŵ∗ and ŵ+, the expected similarity between
Y_train∗ and Y_train+ can be inferred.

C. ANALYSIS OF THE NORMALIZATION INFLUENCE ON
THE FEATURES’ CONTRIBUTION
After demonstrating in previous Sections the influence of
FN method selection on the model’s performance, next,
as detailed in Section V-E1, an analysis of the features’
contribution values estimated from the differently normalised
datasets is conducted based on the traditional and the
proposed adapted Garson’s method. In addition, in order
to demonstrate the superiority of the adapted Garson’s
method to truly infer the real features’ contribution to
the model, the FS strategy described in Section V-E2 is
applied.

1) MEAN FEATURES’ CONTRIBUTION
This Section analyses the dissimilarities between the fea-
tures’ contribution to the models trained with different FN
methods, and the differences in the contribution values esti-
mated with the traditional Garson’s method and the proposed
adapted one. As described in Section V-E, this inspection
is conducted over the mean contribution values G and Ĝ
estimated from all the initialisation.

a: TRADITIONAL GARSON’s METHOD
Fig. 5 depicts the values of G

∗
for ∗ ∈ Norm. In addition,

Table 7a collects for each dataset, the difference between
the highest and the lowest features’ contribution values, and
the std of each G

∗
are collected in Table 7b. τ (G

∗
,G
+
)

and Ed (G
∗
,G
+
) for ∗ 6= + ∈ Norm are shown in

Tables 7c and 7d, respectively.
In Figs. 5a-5d it is observed that G

∗
values consider-

ably varies depending on the FN method. In fact, Table 7a
shows that the differences between the most extreme values
are greater than 82% for the CBM dataset normalised with
ST or MAD methods and for the News dataset normalised
with MM. Contrary, in the other cases, the features with
the lowest influence in the network present at least 60%
the contribution value of the most influencing one. So, in
these cases, the features’ contribution to the network is more
uniform than the observed in the former datasets. Finally,
regarding the features’ influence ranking, since 9 out of 12
Kendall’s τ values are lower than 0.72 in Table 7c, it can
be concluded that the selection of the FN method consider-
ably alters the network’s weight rank. The only cases with
τ ≥ 0.944 are obtained when comparing G

ST
and G

MAD
for

CBM, NOX and CO datasets. These results may be justified
by the low difference between ŵST and ŵMAD estimated for
CBM, NOX and CO datasets observed in Figs. 4a and 4b,
respectively.
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FIGURE 5. Ĝ
∗

.

TABLE 7. Similitude analysis between the features’ contribution
estimated with the traditional Garson’s method.

b: PROPOSED ADAPTED GARSON’s METHOD
In the following, the same analysis is performed over Ĝ

∗

for
∗ ∈ Norm.

Fig. 6 illustrates significant differences between max{Ĝ
∗

}

and min{Ĝ
∗

} values. In fact, as Table 8a shows, the pro-
portional differences between the most extreme contribution
values are higher than 99%. This means that, in comparison
with the most influencing feature, the feature with the lowest
contribution value affects less than 1% the network’s cal-
culations. Regarding the Kendall’s τ correlation coefficients
collected in Table 6a, 5 out of 12 values are lower than
0.85, which means that, in those cases, the rank of Ĝ

∗

varies
depending on the FN method. In contrast, for NOX and CO
datasets, the features’ contribution ranks are the same inde-
pendently from the normalisation method. This is coherent
with the results observed in Table 6a, wherein ŵ∗ presented
the same rank for ∗ ∈ Norm.

c: COMPARISON BETWEEN THE TRADITIONAL AND THE
PROPOSED ADAPTED GARSON’s METHOD
Significant differences derived from the inclusion of disper-
sion factors in the features’ relevance calculation are clear
when examining Figs. 5 and 6. From the traditional Garson’s

FIGURE 6. Ĝ
∗

.

TABLE 8. Similitude analysis between the features’ contribution
estimated with the adapted Garson’s method.

method, the features present more uniformly distributed con-
tribution values that the calculated ones with the proposed
approach. In fact, all the std values from G

∗
are lower than

0.052 (Tables 7b); while, in Table 8b, the std values of Ĝ
∗

are higher than 0.1 in most of the cases. Besides, in terms

of Kendall’s τ (G
∗
, Ĝ
∗

) the importance rankings obtained
with the traditional or the proposed Garson’s methods are
extremely different, as Table 9 illustrates.

In the following the results from Sections VI-C1.a and
VI-C1.b are compared with those from Section VI-A.
Regarding the features’ contribution values estimated with

the proposed adapted Garson’s method, the high τ and
low Ed values for CBM dataset from Tables 8c and 8d
may explain the mean MAE and RMSE differences close
to 0 in Tables 3 and 4. In NOX, where the features’ rele-

vance rankings do not vary, the low Ed (Ĝ
ST
, Ĝ

MAD
) agree

with the low mean MAE and RMSE differences from

Table 3c for the corresponding case, while Ed (Ĝ
MM
, Ĝ

ST
)=

0.114 and Ed (Ĝ
MM
, Ĝ

MAD
)= 0.118 reflect the increment

in the mean errors when comparing the resulting outputs.
The same rationale is applied to the results obtained for
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CO dataset. In contrast, for the mentioned cases, with the
traditional Garson’s method, the rank dissimilarities collected
in Table 7c, and Ed (G

∗
,G
+
) < 0.1 from Table 7d does not

seem enough to explain the performance differences from
Tables 3 and 4.

TABLE 9. τ (G
∗
, Ĝ
∗

).

Furthermore, contrary to the observed in Table 3b for
News dataset, according to Tables 7c and 7d, the low-
est mean MAE and RMSE errors would be expected
from the dataset normalised with ST and MAD. However,
the calculated errors in Table 3b agree with the trade-off
between τ coefficients and Euclidean distance values from
Tables 8c and 8d derived from the proposed adapted Garson’s
method.

Then, it can be concluded that different features’ contri-
bution values are derived from the FN method selection and
that higher correspondence exists between the results from
Sections VI-A and VI-B respect to the features’ contribu-
tion values estimated with the proposed adapted Garson’s
method compared to the observed with the traditional
one.

2) FEATURE SELECTION BASED ON
FEATURES’ CONTRIBUTION
This Section applies the FS strategy described in Section V-E2
to demonstrate the superiority of the adapted Garson’s
method for estimating the true features’ contribution to the
model. For doing so, since multiple initialisations have been
employed to train the models, for each ∗ ∈ Norm, the model
that reaches the lowest RMSE value is selected. Then, from
such model, the features’ contribution values computed with
the traditionalG∗ and the proposed adapted Garson’s method
Ĝ
∗
are employed.
Figs. 7 to 10 depict theG∗ and Ĝ

∗
values estimated for each

∗ ∈ Norm and each dataset, respectively.
In Figs. 7b, 8b, 9b and 10b it is observed that the feature

with lowest influence presents a contribution value lower
than 1% the value of the highest contribution. Thus, respect
to the most influencing one, the contribution to the model
of at least one feature is insignificant. In fact, according to
Figs. 7b and 8b, Ĝ

∗

j < 2 · max{Ĝ
∗

j } for most of the features.
In contrast, the features’ contribution values estimated with
the traditional Garson’s method do not show as high dis-
parity between the highest and lowest features contribution
values. Besides, Table 10 collects the Kendall’s τ coefficients
from comparing the features’ contribution rank estimated for
∗ 6= + ∈ Norm estimated with the traditional and the
proposed Garson’s method.

FIGURE 7. CBM.

FIGURE 8. News.

FIGURE 9. NOX.

FIGURE 10. CO.

When comparing the results from Tables 10a and 10b it
is observed that the features’ contribution rank significantly
varies depending on ∗ according to the traditional Garson’s
method. In contrast, highest τ (Ĝ

∗
, Ĝ
+
) values are obtained

when comparing the features’ rank estimated with the pro-
posed approach.

Aiming at contrasting the features’ contribution rank simi-
larity estimated by the traditional and the proposed Garson’s
methods, Kendall’s τ (G∗, Ĝ

∗
) correlation coefficients are

depicted in Table 11.
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TABLE 10. For ∗ 6= + ∈ Norm, similarity between the features’
contribution rank estimated by the traditional or the proposed Garson’s
method.

As Table 11 shows, since the τ values are lower than 0.5,
there are significant differences in the feature’s influence
rankings when comparing both feature relevance analysis
methods. In order to demonstrate the superiority of the pro-
posed adapted Garson’s method for the estimation of the real
features’ contribution values, the FS strategy (Algorithm 1)
is applied.

FS is the strategy of removing disturbing or non-
contributing features to improve themodel’s performance and
reduce the computational cost and the memory requirements.
As explained in Section IV-B and proven in Section VI, this
work states and demonstrates the influence of the FN method
selection in the model’s performance and in the features’
contribution to the model. Thus, in this Section the features
removal is conducted as described in Section V-E2 based on
G∗ and Ĝ

∗
for ∗ ∈ Norm. Every time a feature is discarded,

the model is retrained, and the RMSE between the estimated
output and the real one is calculated. This experiment aims to
compare the validity of the adapted Garson’s method, against
the traditional Garson’s method, for estimating the real fea-
tures’ contribution. For each dataset and each ∗, the random
initialisation that reaches the lowest RMSE when employ-
ing the whole dataset is utilised. Note that given a dataset,
the lowest RMSE value is obtained with different random
initialisations for the different FN methods.

TABLE 11. Kendall’s τ correlation between τ (G∗ and Ĝ
∗
) for each

∗ ∈ Norm.

Figs. 11 to 13 depict for each dataset and each FN method
the RMSE value obtained for each iteration of the FS strategy.
The X-axis refers to the number of features removed at each
stage of the procedure. Thus, 0 refers to the employment
of the whole dataset. The Y-axis collects the RMSE value
between the real and the estimated output for the training set.
The blue stars depict the results obtained when the features
are discarded according to G∗; and the pink vertical lines,
the RMSE value resulting from the feature selection strategy
based on Ĝ

∗
. The horizontal green line represents the RMSE

value reached with the complete dataset. Note that the fea-
tures are removed one by one, and since the rank similarity
between the contributions estimated by the traditional and the

FIGURE 11. CBM dataset.

FIGURE 12. NOX dataset.

FIGURE 13. CO dataset.

FIGURE 14. News dataset.

adapted Garson’s methods differs, the removed feature may
not coincide at each stage of the algorithm.

When comparing CBM, NOX and CO datasets it is
observed that the RMSE values resultant from the features

removal based on GST and GMAD and based on Ĝ
ST

and
Ĝ
MAD

are approximately the same. This was expected from
the results of Tables 10a and 10b. Nevertheless, in these
cases, especially for NOX and CO datasets, the RMSE values
obtained from the FS based on the adapted Garson’s method
are closer to the performance reached with the whole dataset,
especially when increasing the number of removed features.
In fact, as observed in Figs. 7a, 9a and 10a, and in Table 10b,
there are significant differences between the contribution
value estimated for the most influencing features and the rest-
ing ones. Consequently, in Figs. 12a to 12c and 13a to 13c it
is observed that the RMSE obtained with all the features
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and the RMSE obtained when utilising uniquely the most
influencing features is almost the same. Furthermore, inNews
dataset, in Fig. 4c significant differences between ŵ∗ for
∗ ∈ Norm were observed. Consequently, in Figs. 14a to 14c
by comparing the results from the FS strategy according to
the traditional or the adapted Garson’s methods, it is clear
that each feature contribution in the model differs depending
on the normalisation method employed to transform News
dataset. Besides, in Figs. 14a and 14b it is observed that
the RMSE error estimated at each stage of the FS strategy
based on the Ĝ

∗
remains closer to the RMSE obtained with

all the features than the RMSE resulting from FS according
to Garson’s traditional method.

All in all, it is demonstrated that the dispersion factors
inclusion in the features’ contribution calculation signifi-
cantly improves the estimation of the real features’ influence
on the model, as observed through the FS strategy.

VII. DISCUSSION
As stated and demonstrated in this work, the FN method
selection significantly affects the ANN-based model’s per-
formance and the inclusion of dispersion factors when esti-
mating the features’ contribution improves the understanding
of the features’ influence on the model.

The former point emphasises the influence of the FN
method selection; however, it remains open the question
about which FN to employ to transform a given dataset in
order to reach the best model’s performance; or even if it is
recommendable the application of FN or discard the magni-
tude of the features by removing the 10nj factors from (4).
As stated in Sections III and IV-B, FN imposes a dispersion
weight to compress or expand the features. Thus, FN can
be viewed as a Feature Weighting method that estimates
the features’ weights in an unsupervised manner since the
dispersion factors are calculated based on the features’ sta-
tistical characteristics. A weight that does not correspond to
the real relative importance of a given feature can result in a
performance loss. In fact, in Table 4b it is observed that for the
test set, lower mean RMSE and higher R2 scores are obtained
from the raw dataset with the magnitude factors removed than
from any normalised dataset. Thus, further research about the
suitability of the FN method selection would be interesting
given the properties of a given dataset. Moreover, since this
work demonstrates the influence of the FN on the network,
it is evident that other preprocessing techniquesmay also con-
dition the model’s performance. Hence, the impact of super-
vised FW preprocessing methods to improve the model’s
performance should be investigated. Furthermore, a conjoint
comparison between the supervised weights calculated with
a given FW method and their similitude with the dispersion
factors estimated with different FN may guide the selection
of a given normalisation method to preprocess the input data.

In addition, this work analyses the weight matrix analysis-
based methods to understand the features’ contribution to the
model. However, it would be interesting to extend the analysis
to other explainability analysis approaches. The presented

results are obtained from networks with the identity activation
function in the hidden and output layers. Then, further studies
for network’s with different activation functions are needed.

Another interesting research topic until the date in the
ANN branch is the search of the optimal weights initiali-
sation to maintain the fair initial features’ contribution to
the solution search space. However, in the same way that
FN influences the features’ contribution to the model’s per-
formance, it may be suspected that it may also condition
the suitability of the initial weight configuration for a fair
weights adjustment. As aforementioned, the lowest RMSE
values reached by each normalised dataset are obtained with
different random initialisations. Moreover, note that despite
the significant differences in terms of meanMAE, RMSE and
R2 based on ∗; the minimum estimated errors (reached with
different initialisations) in Table 4 are almost the same for
each normalised dataset. Further studies about the network
initialisation based on the conjoint influence of the dispersion
factors and the initial weight matrix may be of great interest,
which may result in a new weight initialisation strategy.

VIII. CONCLUSION
Due to the high ability of ANN to model complex systems,
these algorithms are being widely employed to solve complex
problems. Simultaneously, because of the lack of explainabil-
ity of the ANN, state-of-the-art focuses on bringing some
understanding about the network functioning. In this field,
several works aim at analysing the features’ contribution
to the model via weight matrices study. However, in such
works, the preprocessing phase is not considered when esti-
mating the features’ contribution. This work has been the-
oretically proven and later experimentally validated that the
dispersion factors employed to transform the input features’
influence the final features’ contribution to the model and
the model’s performance. In fact, as shown in this work,
the presented proportional dispersion weights are explanatory
factors of the similarity between the performance obtained
by models trained with different FN methods. Then, as a
conclusion of this work, it is recommended to include infor-
mation about the dispersion factors to analyse the features’
real contribution. In this line, this work proposes adapted
Garson’s and Yoon’s methods that include features’ disper-
sion factors for a more precise estimation of the features’
influence on themodel. Besides, a feature selection strategy is
employed to analyse in terms of RMSE variations the effect of
removing features according to Garson’s method or the pro-
posed adapted Garson’s method. These experiments demon-
strate that the RMSE results obtainedwhen removing features
according to the adapted Garson’s method match the conclu-
sions obtained from the features’ contribution values. Then,
the knowledge extracted from this proposal improves the
understanding of the features’ contribution to the model and
enhances the feature selection strategy, which is fundamental
in real use cases to model the problem at hand reliably.

Futureworkwill focus on considering the conjoint compar-
ison between the features’ weights derived from supervised
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FW and their similitude with the dispersion factors to guide
the optimal FN method selection. Besides, the impact of FW
as preprocessing technique for performance improvement
and the influence of preprocessing techniques on ANNs with
different activation functions will be considered in future
works. Moreover, new network’s initialisation approaches
based on the conjoint influence of the preprocessing fac-
tors and the initial weight matrix may be an exciting future
research topic.

REFERENCES
[1] M. H. Hassoun, Fundamentals of Artificial Neural Networks. Cambridge,

MA, USA: MIT Press, 1995.
[2] A. K. Jain, J. Mao, and K. M. Mohiuddin, ‘‘Artificial neural networks:

A tutorial,’’ Computer, vol. 29, no. 3, pp. 31–44, Mar. 1996.
[3] O. I. Abiodun, M. U. Kiru, A. Jantan, A. E. Omolara, K. V. Dada,

A. M. Umar, O. U. Linus, H. Arshad, A. A. Kazaure, and U. Gana,
‘‘Comprehensive review of artificial neural network applications to pattern
recognition,’’ IEEE Access, vol. 7, pp. 158820–158846, 2019.

[4] C. M. Agu, M. C. Menkiti, E. B. Ekwe, and A. C. Agulanna, ‘‘Modeling
and optimization of Terminalia catappa L. Kernel oil extraction using
response surface methodology and artificial neural network,’’ Artif. Intell.
Agricult., vol. 4, pp. 1–11, Jan. 2020.

[5] M. Jalanko, Y. Sanchez, V. Mahalec, and P. Mhaskar, ‘‘Adaptive sys-
tem identification of industrial ethylene splitter: A comparison of sub-
space identification and artificial neural networks,’’ Comput. Chem. Eng.,
vol. 147, Apr. 2021, Art. no. 107240.

[6] J. Lee, Y. C. Lee, and J. T. Kim, ‘‘Migration from the traditional to the
smart factory in the die-casting industry: Novel process data acquisition
and fault detection based on artificial neural network,’’ J. Mater. Process.
Technol., vol. 290, Apr. 2021, Art. no. 116972.

[7] B. Li, C. Li, J. Huang, and C. Li, ‘‘Application of artificial neural network
for prediction of key indexes of corn industrial drying by considering the
ambient conditions,’’ Appl. Sci., vol. 10, no. 16, p. 5659, Aug. 2020.

[8] Y. Park, M. Choi, K. Kim, X. Li, C. Jung, S. Na, and G. Choi, ‘‘Prediction
of operating characteristics for industrial gas turbine combustor using
an optimized artificial neural network,’’ Energy, vol. 213, Dec. 2020,
Art. no. 118769.

[9] A. Adadi and M. Berrada, ‘‘Peeking inside the black-box: A sur-
vey on explainable artificial intelligence (XAI),’’ IEEE Access, vol. 6,
pp. 52138–52160, 2018.

[10] A. Fischer, ‘‘How to determine the unique contributions of input-variables
to the nonlinear regression function of a multilayer perceptron,’’ Ecol.
Model., vols. 309–310, pp. 60–63, Aug. 2015.

[11] J. D. Olden and D. A. Jackson, ‘‘Illuminating the ‘black box’: A ran-
domization approach for understanding variable contributions in artificial
neural networks,’’ Ecol. Model., vol. 154, nos. 1–2, pp. 135–150, 2002.

[12] C. R. D. Sá, ‘‘Variance-based feature importance in neural networks,’’
in Proc. Int. Conf. Discovery Sci. Cham, Switzerland: Springer, 2019,
pp. 306–315.

[13] A. B. Arrieta, N. Díaz-Rodríguez, J. Del Ser, A. Bennetot, S. Tabik,
A. Barbado, S. Garcia, S. Gil-Lopez, D. Molina, R. Benjamins, R. Chatila,
and F. Herrera, ‘‘Explainable artificial intelligence (XAI): Concepts, tax-
onomies, opportunities and challenges toward responsible AI,’’ Inf. Fusion,
vol. 58, pp. 82–115, Jun. 2020.

[14] A. Eck, L. M. Zintgraf, E. F. J. de Groot, T. G. J. de Meij, T. S. Cohen,
P. H. M. Savelkoul, M. Welling, and A. E. Budding, ‘‘Interpretation
of microbiota-based diagnostics by explaining individual classifier deci-
sions,’’ BMC Bioinf., vol. 18, no. 1, pp. 1–13, Dec. 2017.

[15] K. Amarasinghe and M. Manic, ‘‘Explaining what a neural network has
learned: Toward transparent classification,’’ in Proc. IEEE Int. Conf. Fuzzy
Syst. (FUZZ-IEEE), Jun. 2019, pp. 1–6.

[16] D. Janzing, L.Minorics, and P. Blöbaum, ‘‘Feature relevance quantification
in explainable AI: A causal problem,’’ in Proc. Int. Conf. Artif. Intell.
Statist., 2020, pp. 2907–2916.

[17] J. Jiménez-Luna, F. Grisoni, and G. Schneider, ‘‘Drug discovery with
explainable artificial intelligence,’’ Nature Mach. Intell., vol. 2, no. 10,
pp. 573–584, Oct. 2020.

[18] J. Wang, J. Wiens, and S. Lundberg, ‘‘Shapley flow: A graph-based
approach to interpretingmodel predictions,’’ inProc. Int. Conf. Artif. Intell.
Statist., 2021, pp. 721–729.

[19] B. Venkatesh and J. Anuradha, ‘‘A review of feature selection and its
methods,’’ Cybern. Inf. Technol., vol. 19, no. 1, pp. 3–26, Mar. 2019.

[20] V. Bolón-Canedo and A. Alonso-Betanzos, ‘‘Ensembles for feature selec-
tion: A review and future trends,’’ Inf. Fusion, vol. 52, pp. 1–12, Dec. 2019.

[21] Q. Al-Tashi, S. J. Abdulkadir, H. M. Rais, S. Mirjalili, and H. Alhussian,
‘‘Approaches to multi-objective feature selection: A systematic literature
review,’’ IEEE Access, vol. 8, pp. 125076–125096, 2020.

[22] C. M. Bishop, Neural Networks for Pattern Recognition. London, U.K.:
Oxford Univ. Press, 1995.

[23] K. D. Pramanik, M. Mukhopadhyay, and S. Pal, ‘‘Big data classification:
Applications and challenges,’’ in Artificial Intelligence and IoT: Smart
Convergence for Eco-Friendly Topography, vol. 85. Singapore: Springer,
2021, p. 53. [Online]. Available: https://www.springer.com/gp/book/
9789813363991

[24] Y. Kong and T. Yu, ‘‘A graph-embedded deep feedforward network for
disease outcome classification and feature selection using gene expression
data,’’ Bioinformatics, vol. 34, no. 21, pp. 3727–3737, Nov. 2018.

[25] O. Yucel, E. S. Aydin, and H. Sadikoglu, ‘‘Comparison of the different
artificial neural networks in prediction of biomass gasification products,’’
Int. J. Energy Res., vol. 43, no. 11, pp. 5992–6003, Sep. 2019.

[26] H. Turabieh, M. Mafarja, and X. Li, ‘‘Iterated feature selection algo-
rithmswith layered recurrent neural network for software fault prediction,’’
Expert Syst. Appl., vol. 122, pp. 27–42, May 2019.

[27] F. Curreri, G. Fiumara, andM. G. Xibilia, ‘‘Input selectionmethods for soft
sensor design: A survey,’’ Future Internet, vol. 12, no. 6, p. 97, Jun. 2020.

[28] B. Jeong and H. Cho, ‘‘Feature selection techniques and comparative stud-
ies for large-scale manufacturing processes,’’ Int. J. Adv. Manuf. Technol.,
vol. 28, nos. 9–10, pp. 1006–1011, Jul. 2006.

[29] N. L. da Costa, M. D. de Lima, and R. Barbosa, ‘‘Evaluation of feature
selection methods based on artificial neural network weights,’’ Expert Syst.
Appl., vol. 168, Apr. 2021, Art. no. 114312.

[30] T. A. Folorunso, A. M. Aibinu, J. G. Kolo, S. O. Sadiku, and A. M. Orire,
‘‘Effects of data normalization on water quality model in a recirculatory
aquaculture system using artificial neural network,’’ i-Manager’s J. Pattern
Recognit., vol. 5, no. 3, p. 21, 2018.

[31] A.Gökhan, C. O. Güzeller, andM. T. Eser, ‘‘The effect of the normalization
method used in different sample sizes on the success of artificial neural
network model,’’ Int. J. Assessment Tools Educ., vol. 6, no. 2, pp. 170–192,
Apr. 2019.

[32] B. K. Singh, K. Verma, and A. Thoke, ‘‘Investigations on impact of feature
normalization techniques on classifier’s performance in breast tumor clas-
sification,’’ Int. J. Comput. Appl., vol. 116, no. 19, pp. 11–15, Apr. 2015.

[33] X. A. Larriva-Novo, M. Vega-Barbas, V. A. Villagrá, and M. S. Rodrigo,
‘‘Evaluation of cybersecurity data set characteristics for their applicability
to neural networks algorithms detecting cybersecurity anomalies,’’ IEEE
Access, vol. 8, pp. 9005–9014, 2020.

[34] C. E. Choong, S. Ibrahim, and A. El-Shafie, ‘‘Artificial neural net-
work (ANN) model development for predicting just suspension speed in
solid-liquid mixing system,’’ Flow Meas. Instrum., vol. 71, Mar. 2020,
Art. no. 101689.

[35] N. Khare, P. Devan, C. Chowdhary, S. Bhattacharya, G. Singh, S. Singh,
and B. Yoon, ‘‘SMO-DNN: Spider monkey optimization and deep neu-
ral network hybrid classifier model for intrusion detection,’’ Electronics,
vol. 9, no. 4, p. 692, Apr. 2020.

[36] R. Ramani, K. V. Devi, and K. R. Soundar, ‘‘MapReduce-based big
data framework using modified artificial neural network classifier for
diabetic chronic disease prediction,’’ Soft Comput., vol. 24, no. 21,
pp. 16335–16345, Nov. 2020.

[37] W. Zhang, Q. M. J. Wu, Y. Yang, and T. Akilan, ‘‘Multimodel feature rein-
forcement framework using Moore–Penrose inverse for big data analysis,’’
IEEE Trans. Neural Netw. Learn. Syst., early access, Oct. 6, 2020, doi:
10.1109/TNNLS.2020.3026621.

[38] Z. Shi, W. Zheng, and W. Yin, ‘‘Improving the reliability of the prediction
of terrestrial water storage in Yunnan using the artificial neural network
selective joint prediction model,’’ IEEE Access, vol. 9, pp. 31865–31879,
2021.

[39] D. Dua andC. Graff, ‘‘UCImachine learning repository,’’ School Inf. Com-
put. Sci., Univ. California, Irvine, CA, USA, 2017. [Online]. Available:
http://archive.ics.uci.edu/ml

[40] S. García, J. Luengo, and F. Herrera, Data Preprocessing in Data Mining,
vol. 72. Cham, Switzerland: Springer, 2015.

125476 VOLUME 9, 2021

http://dx.doi.org/10.1109/TNNLS.2020.3026621


I. Niño-Adan et al.: Normalization Influence on ANN-Based Models Performance

[41] G. D. Garson, ‘‘Interpreting neural-network connection weights,’’ AI
Expert, vol. 6, no. 4, pp. 46–51, Apr. 1991, doi: 10.5555/129449.129452.

[42] Y. Yoon, G. Swales, Jr., and T. M. Margavio, ‘‘A comparison of discrimi-
nant analysis versus artificial neural networks,’’ J. Oper. Res. Soc., vol. 44,
no. 1, pp. 51–60, Jan. 1993.

[43] A. Coraddu, L. Oneto, A. Ghio, S. Savio, D. Anguita, and A. Figari,
‘‘Machine learning approaches for improving condition-based mainte-
nance of naval propulsion plants,’’ Proc. Inst. Mech. Eng., M, J. Eng.
Maritime Environ., vol. 230, no. 1, pp. 136–153, 2016.

[44] H. Kaya, P. Tüfekci, and E. Uzun, ‘‘Predicting CO andNOx emissions from
gas turbines: Novel data and abenchmark PEMS,’’ TURKISH J. Electr.
Eng. Comput. Sci., vol. 27, no. 6, pp. 4783–4796, Nov. 2019.

[45] K. Fernandes, P. Vinagre, and P. Cortez, ‘‘A proactive intelligent deci-
sion support system for predicting the popularity of online news,’’ in
Proc. Portuguese Conf. Artif. Intell. Cham, Switzerland: Springer, 2015,
pp. 535–546.

[46] X. Glorot and Y. Bengio, ‘‘Understanding the difficulty of training deep
feedforward neural networks,’’ in Proc. 13th Int. Conf. Artif. Intell. Statist.,
2010, pp. 249–256.

[47] L. Puka, Kendall’s Tau. Berlin, Germany: Springer, 2011, pp. 713–715.
[48] R. Woolson, ‘‘Wilcoxon signed-rank test,’’ inWiley Encyclopedia of Clin-

ical Trials. Hoboken, NJ, USA: Wiley, 2007, pp. 1–3. [Online]. Available:
https://www.springer.com/gp/book/9789813363991

IRATXE NIÑO-ADAN was born in Bilbao,
Basque Country, in 1990. She received the
bachelor’s degree in mathematics and the master’s
degree in mathematical modeling and research,
statistics, and computing from the University of
the Basque Country (UPV/EHU), in 2015 and
2017, respectively. She is currently pursuing the
Ph.D. degree with Tecnalia Research and Inno-
vation. Her research interests include developing
advanced techniques with regards to data analytics
and Industry 4.0.

EVA PORTILLO received the Ph.D. degree in
engineering, in 2007. She is currently an Asso-
ciate Professor with the Department of Automatic
Control and Systems Engineering, University of
the Basque Country (UPV/EHU). She has several
awards at national conferences. In 2016, she was a
Visiting Professor with the Knowledge Engineer-
ing and Discovery Research Institute (KEDRI),
Auckland University of Technology, Auckland,
New Zealand. From 2017 to 2019, she has been

the Vice-Dean of the master’s and Doctoral School of the University of
the Basque Country, where she is currently an Academic Secretary of the
Doctoral School. She received the Prize for Outstanding Ph.D. thesis
awarded by UPV/EHU, in 2010.

ITZIAR LANDA-TORRES received the Ph.D.
degree in telecommunication engineering from the
University of Deusto and the Ph.D. degree in infor-
mation technology from the University of Alcalá
de Henares (UAH). She has been a Researcher
at Tecnalia Research and Innovation, working in
artificial intelligence, data-mining, pattern anal-
ysis, neural networks, clustering, and grouping
problems related to different fields of knowledge.
During her ten-year-long research career, she has

coauthored more than 25 scientific publications in various international
journals Applied Soft Computing, Engineering Applications of Artificial
Intelligence, and Expert Systems with Applications. She is currently the
Innovation Project Manager at Petronor Innovación S.L. (Repsol).

DIANA MANJARRES received the Ph.D. degree
in telecommunication engineering from the Uni-
versity of the Basque Country (UPV/EHU) and
the Ph.D. degree in information technology from
the University of Alcalá (UAH). She is currently
a Scientific Researcher at Tecnalia Research and
Innovation, working in artificial intelligence and
optimization algorithms. During her ten-year-long
research career, she has coauthored more than
25 scientific publications in various international

journals and conferences. Her research interests include heuristic tech-
niques for NP-hard optimization problems, multi-objective optimization,
data-mining, pattern analysis, neural networks, clustering, and grouping
problems related to different fields of knowledge.

VOLUME 9, 2021 125477

http://dx.doi.org/10.5555/129449.129452

