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ABSTRACT This paper proposes a method for tuning the fractional exponent of different types of fractional
order resonant controllers for a voltage source converter in a weak AC grid context. The main objective
is to ensure the stability of the controlled system in a weak AC grid environment and to achieve an
adequate dynamic response under disturbances. Therefore, six commonly used integer order proportional
resonant (PR) control structures are selected from the literature and compared with each other according
to their frequency behaviour. Afterwards, a rational approximation for the fractional order term is selected
based on continuous fraction expansion technique. The inclusion of a fractional exponent in each integer
order PR structure generates the fractional order proportional resonant (FPR) control transfer functions.
Once the FPR controllers have been obtained, their closed-loop responses are tested via eigenvalue trajectory
analysis. For each FPR control structure, a range of the fractional exponent that ensures stability is obtained.
The conclusions of eigenvalue trajectory analysis are tested by implementing the FPR control structures in
an specific application consisting in a modular multi-level converter (MMC) connected to a weak AC grid
with adjustable short-circuit ratio. By means of time-domain simulations, not only the previous eigenvalue
analyses are validated, but also new tuning criteria are given for the fractional exponent in combination with
other control parameters, such as the damping frequency and the inductance of the complementary feedback
branch. Moreover, a sensitivity analysis of the tuning criteria is carried out for other sizes of the AC filter

inductance.

INDEX TERMS Stability analysis, fractional order resonant control, frequency analysis, weak AC grid.

I. INTRODUCTION

Advanced energy conversion systems with multiple electrical
ports and their control approaches are nowadays in the spot-
light of the current research trends in electrical engineering.
The main reasons behind their growing role are, above all,
the need of increasing efficiency and flexibility of energy con-
verters in a context where renewable energy sources (RES)
are more and more distributed [1], which in turn, acts as an
important driver for the digitalisation of electric power system
models in the energy sector [2].
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Digital models for dynamic and transient simulation of
energy conversion systems are becoming the cornerstone of
research in multi-port advanced conversion systems in order
to predict their behaviour in unexpected but ever more and
more frequent circumstances. In this vein, the weakening of
AC grids due to dynamic impact of nearby grids with high
content of power electronic-based RES [3] or challenges for
inertial response [4] are scenarios that may command a new
design of control schemes or new parameterisations. There-
fore, simulations are a powerful tool to study such scenarios
and redesign control schemes, as they allow to work with
simplified representations of multi-port energy conversion
systems for large system studies [5].
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Besides, with the increasingly frequent cooperative control
among devices and in the advent of multi-purpose control
systems and strategies [6], the tuning of control parameters of
devices is gaining complexity, as resonances between control
systems or between control systems and power equipment
may appear [7]. Moreover, the exploration of extra degrees
of freedom in controllers provided by additional parameters,
other than their proportional or integral control parameters,
adds flexibility to cope with these complexities.

Among these multi-port advanced energy conversion sys-
tems, the voltage source converter (VSC) stands out over
its competitor, the current source converter (CSC), as it is
able to achieve a separate control of active and reactive
power, manage a higher control level of DC grids and pro-
vide black-start capability [3], [8]. The control schematics
of VSCs are usually composed by two stages: on the one
hand, the outer loop stage, which is aimed at controlling
the active, reactive power and/or DC voltage, and on the
other hand, the inner loop stage, whose objective is the
control of currents at the point of common coupling (PCC)
[31, [9], [10]. These currents, or at least a transformed version
of them, made through the modulation or insertion indices,
are ultimately used to control the VSC. An specific VSC
is the modular multilevel converter (MMC), which is par-
ticularly employed in high-voltage direct current (HVDC)
systems due to its benefits over the two-level VSC, among
which the modularity, reduced losses and scalability are
listed [11]-[13].

According to the existing literature, the inner current con-
trol schemes most widely employed are the proportional
integral (PI) controllers due to their simpler implementation,
whereas proportional resonant (PR) schemes have been tested
to provide improvements regarding their response under
unbalanced faults in comparison to PI controllers [14]-[17],
at the cost of certain dependency to frequency changes. The
dependency of PR controllers on frequency changes has been
vastly studied in [18]-[20].

To the best knowledge of the authors, there are three dif-
ferent ways to reduce the dependency to frequency changes
of an ideal topology of a PR controller and thus improve its
properties.

A first way is to modify the transfer function of the ideal
PR controller topology, either by adding a first order damping
term in the denominator or by including a second order term
that multiplies the proportional constant. Both modifications
of the ideal PR topology are called, respectively, the non-ideal
and the complex-vector PR controllers, and they reduce the
dependency of the ideal PR controller to frequency changes,
being the complex-vector topology the one which achieves
the largest reduction. However, complex-vector PR controller
may present stability issues if no voltage decoupling branches
are provided [3], [18].

A second way to reduce the sensitivity of the PR con-
troller to frequency variations, is the inclusion of differ-
ent feedback complementary branches, giving rise to PRXF,
PRXC and PRX2 topologies. Among them, PRXF provides
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a lower sensitivity to frequency changes compared to ideal
PR controller in direct sequence. However, the sensitivity
to frequency changes is much higher in inverse sequence.
In contrast, PRXC reduces the sensitivity with respect to
ideal PR controller but not as much as the PRXF controller.
Furthermore, PRXC topology is not able to work with inverse
sequence currents. Eventually, PRX2 controller achieves the
largest reduction of dependency to frequency compared to
PRXF or PRXC, and achieves this in both direct and inverse
sequences [9], [19], [20].

A third way to reduce their dependency on frequency is
to include a fractional order term in their transfer function.
For this purpose, there are different approximations that have
been employed to represent a fractional order term, according
to [21], [22]. In [23], a fractional order resonant controller
was introduced and their implementation showed robustness
against fluctuations in frequency and an improved transient
response, although a limited range of fractional exponent
(lower than 1) was tested and the controller was not tested in
a weak AC grid environment. Furthermore, they did neither
consider fractional order PR controller topologies, other than
the fractional ideal PR scheme, nor contemplated variations
in the AC filter inductance while performing the analysis. The
authors in [24], [25] developed a concept of fractional order
PR controller by selecting the Chareff’s approximation to
represent the fractional order term and researched on a tuning
methodology for improving the phase delay for a wide energy
range. Their study was mainly focused on the fractional order
topologies coming from PI and ideal PR configurations, and
the fractional order PR configuration was also extended for
harmonic compensation. However, they did not implement
their methodology for fractional exponents lower than 1 and
did neither look for sources of instability due to AC grid
weakness, nor considered other fractional order PR configu-
rations different from PR ideal topology. Besides, the authors
in [26] developed a fractional order controller for frequency
regulation in a multi-area power system, based on employing
a hybrid fractional order controller for load frequency control,
in combination with the fractional order proportional inte-
gral controller for battery management, showing robustness
against the variation of physical parameters. Despite this,
no resonant controller types were explored in this hybrid
methodology.

The design of fractional order controllers for systems with
time delays has been mostly studied in [27]-[29]. In [27],
a fractional order controller was implemented in the speed
control of a DC motor with time delay, and the efficiency
of the fractional implementation was reported in the simu-
lations. In [28], a generalised fractional order proportional
integral derivative controller was designed according to the
obtention of the biggest regional stability area, and it was
reported to be useful for systems having time delays. The
authors in [29] imposed frequency domain specifications,
namely the gain crossover frequency, phase margin and
iso-damping property, to tune the fractional order controller
for a system with time delays, and the resulting controller
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properly mitigated the disturbances despite the time
delays.

The application of artificial intelligence algorithms to
design the fractional order resonant controller has been
treated in [30]-[32], where the authors studied and compared
their results with those obtained with proportional integral
derivative (PID) controller. While authors in [30] focused on
a particle swarm optimization technique, the authors in [31]
and [32] used a flower pollination algorithm to design the
fractional order controller for stable and unstable systems,
respectively.

There are other authors, such as [33], [34], that have
focused the design of fractional order controllers on sta-
bility considerations, as proposed in the present paper.
In [33], the fractional-order control strategy was based on
fractional-order Lyapunov stability theory and its effec-
tiveness was checked via numerical simulations. In [34],
the authors designed the fractional order controller based on
the quatitative feedback theory. According to this approach,
the fractional order controller is employed to control uncer-
tainties, and the prefilter is used to drive the system response
to the desired frequency domain. The approach was imple-
mented in a linearised two-dimensional model of a common
industrial robot and was verified via simulations.

The previous works listed in the literature, [23]-[34], were
mostly focused on the tuning of proportional and integral con-
trol parameters, in combination with the fractional exponent
of fractional order PI, PID and ideal PR controllers. However,
they did not consider other degrees of freedom present in
other PR control topologies different from the ideal PR type,
such as the complementary feedback branch inductance or
the damping frequency. To the best knowledge of the authors,
the stability diagnosis of diverse fractional order PR control
topologies, via eigenvalue trajectory analysis, has not been
explored yet. And much less, in a weak AC grid context.
Besides, the combined tuning of the fractional exponent of
these controllers with parameters, other than proportional and
integral constants, has not been analysed yet.

Therefore, these previous works open a research gap not
covered until now, which leads to further improvements on
the tuning of fractional exponent for different fractional order
proportional resonant (FPR) controllers, to ensure stability
and a proper dynamic response with respect to the integer
order PR controller case. Therefore, the contributions of this
paper to the state of the art are listed hereafter. First, the usage
of a new approximation for the fractional order term, s“.
This approximation can be calculated according to a system-
atic procedure based on the continuous fraction expansion
technique, which is simple to compute compared to other
approximations and yields to sufficient accuracy, as stated
in [35]. Second, the configuration-based stability analysis
based on the previous integer order PR topologies that already
improved the properties of ideal PR controller. This approach
implies that the values for fractional exponent will affect dif-
ferently depending on the FPR topology under consideration.
The inclusion of a fractional order term may improve the
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properties of the PR controller configurations even further.
However, attention must be paid to the way the fractional
exponent value is changed, as it may also lead to instabilities.
Third, the interlinked relation among the fractional expo-
nent, the AC grid weakness and the complementary feed-
back branch inductance is revealed for each fractional order
PR configuration, and the corresponding tuning guidance is
given. Moreover, a sensitivity analysis considering the AC
filter inductance size is carried out and the tuning criteria are
reformulated for each FPR controller.

Hence, the core of this paper is to clarify the role of the
fractional exponent in an FPR-controlled VSC embedded in
an AC grid environment, for given proportional and integral
parameters. In this way, the differential impact of the frac-
tional exponent on the stability can be addressed for diverse
PR controller topologies. Besides, due to the inherent grow-
ing complexity in the electrical power systems nowadays,
resonances may appear among electrically close systems.
Therefore, it is important to analyse the differential impact
of extra controller degrees of freedom provided by diverse
PR topologies. For this purpose, the values for proportional
and integral parameters are selected so that the integer order
PR topology is stable but is also close to the stability limit.

The paper is organised as follows. In Section II, a compara-
tive analysis is achieved among the different integer order PR
topologies according to frequency response. In Section III,
the methodology for tuning the fractional exponent is pre-
sented. In Section IV, the selected approximation for s is
described. In Section V, the FPR controller functions are
built based on the selected rational approximation and after-
wards, an eigenvalue trajectory analysis is made for each
FPR controller. Therefore, a first range of values for o are
deduced for each fractional order PR controller in closed-loop
configuration, in order to ensure the stability. In Section VI,
the previous eigenvalue analysis is first verified for a VSC in
an specific weak AC grid application. A more refined range of
values for s in each fractional order PR topology is obtained
and considerations regarding to the AC grid short-circuit
ratio (SCR) values, other control parameters and AC filter
inductance are examined. In Section VII, the conclusions are
presented.

Il. COMPARATIVE ANALYSIS OF INTEGER ORDER
RESONANT CONTROL STRUCTURES
In this Section, different selected types of integer order PR
control architectures are compared according to their fre-
quency behaviour. The impact of the integral and proportional
control parameters of PR controllers on the bode diagram
and their extension for inverse sequence and for harmonic
compensation have been sufficiently covered in the literature,
as shown in [3], [18]-[20]. This Section is intended to serve
the purpose of clarifying the main differences among PR
controller types before including in them the fractional order
terms.

In these comparisons, the baseline reference topology is
the ideal PR controller, whose transfer function, G,OPLR, in the
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Laplace domain is indicated in (1)
s
GOk = ky + ki—— 1

IPR =" TR 2 o))
As indicated in the introduction, different modifications of
the ideal PR transfer function are found in the literature. One
of them is the non-ideal PR topology, whose transfer function,
G]?,ILPR, is shown in (2), where a first order damping term,
2w.s, has been added in the denominator.

WcS

"2 4+ 2wes + w?
Another variation of the ideal PR architecture is the
complex-vector PR topology, whose transfer function,
G2 .. is shown in (3), which includes a second order term
in the numerator.

GObor = kyp +k )

Gg\L/PR = —kpsz o
52+ w?
In (1)-(3), k, and k; are the proportional and integral control
parameters, o is the resonance frequency and w, is the damp-
ing frequency, in rad/s. The open-loop transfer functions pre-
sented in (1)-(3) are transformed into closed-loop structures
by following (4) and taking into account the resistive and
inductive components of the filter, Ry and Ly, respectively.

3)

GOL

CL Lys+Ry
G = Lt @)

+ Lys+Ry

Being superscript ?F the open-loop transfer function and
superscript ¢~ the closed-loop transfer function in (4).

The derived closed-loop transfer functions from the
open-loop PR control structures are compared in terms of
their frequency behaviour in Fig.1, for @ = 314.159 rad/s,
we = Srad/s, Ry = 0.1 Ohm, Ly = 1.8 mH, k, = 11.3 and
ki = 628, as implemented in [18]. For this purpose, their
bode magnitude and phase diagrams are presented for the fre-
quency range corresponding to direct sequence, i.e. in the sur-
roundings of positive resonant frequency. As shown in Fig.1,

Bode Diagram

Magnitude (dB)
(4]

-15 : :
10’ 102 10° 104
Ideal PR Non ideal PR

Complex vector PR

-45

Phase (deg)

-90

-135 . !
10’ 102 10° 104
Frequency (rad/s)

FIGURE 1. Bode magnitude and phase diagrams of closed-loop transfer
functions of ideal, non-ideal and complex-vector PR controllers.
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at the resonance frequency, 314.159 rad/s, the ideal and
non-ideal PR controllers present a slope in the magnitude
diagram and a peak at the phase diagram. The observed
slope and peak are smoothed in the non-ideal PR topology
in comparison with the ideal PR controller, and this depends
on the size of the first order damping term, 2w.s. In turn,
the complex-vector PR topology does not present a slope or
any phase peak in the magnitude and diagram nor a peak in the
phase diagram. The degree of the slope around the resonance
frequency indicates the dependency of the controller archi-
tecture on frequency fluctuations. The comparison in Fig. 1
is supported by the analysis in [18].

As for those PR control architectures derived from the
inclusion of feedback complementary branches, in Fig. 2 the
different topologies are presented one by one, PR, PRXF,
PRXC and PRX2, based on the analysis conducted in [20].

It can be noted that both PRXF and PRX2 configurations
contain a feedback jwL;, branch that is summed at the output
of the controller, whereas PR and PRXC not. In turn, PRXC
and PRX2 topologies present complex imaginary terms in
their denominators.

| current controller 1

k;s
kp+ 570
- s+

| PR

| current controller 1

|
Iaﬂ,ref"‘ kp 5 ki

s—jo

FIGURE 2. PR architectures according to the inclusion of feedback
complementary branches: PR, PRXF, PRXC and PRXC.

The bode magnitude and phase diagrams of PR, PRXF,
PRXC and PRX2 closed-loop PR controllers is shown
in Fig.3, for which the AC filter parameters are set to Ly =
1.8 mH, Ry = 0.1 Ohm, while L, = 1.8 mH, k, = 3.3 and
ki = 628.

The bode responses of closed-loop ideal PR and PRXC
structures shown in Fig. 3 present the maximum slope at
the resonant frequency in direct sequence, +314.159 rad/s,
compared to PRXF and PRX2 topologies. Nevertheless,
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T T T T

Ideal PR
PRXF
PRXC
PRX2

Magnitude (dB)

45 T T T T

0

-45

Phase (deg)

-90
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10° 10’ 102 108 104 105
Frequency (rad/s)

FIGURE 3. Bode magnitude and phase diagrams of closed-loop transfer
functions of ideal PR, PRXF, PRXC and PRX2 controllers.

the PRXC controller also achieves a slight reduction of the
gain slope with respect to ideal PR controller. With regard
to bode phase diagrams, the ideal PR and PRXC controllers
present an observable phase peak at resonant frequency,
whereas PRXF and PRX2 just present a negligible variation.
Even so, the PRXC scheme smoothes the phase peak at the
resonant frequency with respect to the ideal PR scheme.

The comparison extracted from the bode diagrams in Fig. 3
reflects the benefits, on the one hand, of adding a jwL; feed-
back branch in terms of reducing their sensitivity to frequency
changes, as seen in the bode magnitude diagram of PRXF and
PRX2 schemes. On the other hand, the inclusion of imaginary
terms in the denominators of their transfer functions, as seen
in PRXC and PRX2 schemes, also achieves a slight reduction
of the gain slope at the resonant frequency, in comparison
with the ideal PR topology.

In order to summarise, the complex-vector, PRXF and
PRX2 schemes are those that mostly reduce the dependency
of a PR controller to frequency changes, though the non-ideal
and PRXC schemes still achieve a small reduction.

lll. METHODOLOGY FOR TUNING FRACTIONAL ORDER
RESONANT CONTROLLERS

In this Section, a novel methodology for the tuning of FPR
control structures is described by means of the diagram pre-
sented in Fig. 4.

The steps followed by the diagram in Fig. 4 are hereafter
detailed one by one. First, a proper rational approximation for
the s* term is selected and, as a result, each s* with fractional
exponent, o, can be represented by an appropiate rational
polynomial function composed by integer order terms. The
resulting function is dependent on « and the chosen degree
of polynomial.

Based on this approximation, the integer order PR con-
trollers presented in Section II can be transformed into frac-
tional order PR controllers. Once these FPR controllers have
been built, an eigenvalue analysis of the closed-loop form of
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I Rational approximation for s* I

4

Conversion of integer order PR
controllers into FPR controllers

Eigenvalue trajectory analysis of closed-
loop FPR controllers for 0<a <2

First range of a values ensuring
the stability of each FPR controller

Implementation of FPR control

structures for a VSC in an specific

AC weak grid application
Minimum SCR values in each
FPR-controlled system to ensure stability

Time-domain simulations in transient and steady-state
regime to improve the dynamic response of FPR-
controlled VSC

Validation of range of a values
determined by eigenvalue analysis

Combined tuning of a values with other
control parameters, such as Ly, and w,

|Sensitivity analysis for different Lg sizesl

Modification of combined tuning criteria
for different Ly sizes

FIGURE 4. Diagram of the proposed novel methodology.

the FPR controllers is carried out to obtain a first range of
fractional exponents that ensure stability.

In order to validate the corresponding « values in a weak
AC grid context, as well as to test its impact on the transient
dynamic behaviour, each FPR controller is implemented in
a specific application consisting in an FPR-controlled VSC
connected to a weak AC grid. In order to define the scenarios,
a minimum SCR value of the weak AC grid is determined for
each FPR-controlled VSC.

Once the scenarios for each FPR-controlled system have
been defined, time-domain simulations are executed in order
to test the dynamic transient and steady-state responses under
perturbations in grid current setpoints. The responses will be
evaluated in terms of oscillation peak and oscillation ampli-
tude, settling time, tracking capabilities, and the possibility of
improvement by tuning « in combination with other control
parameters such as w, or L.

After carrying out the time-domain simulations, criteria
for tuning FPR control structures in combination with other
control parameters, such as w. or L, are extracted for each
FPR control structure.

In the end, the methodology also considers the reformula-
tion for different AC filter sizes, Ly, and thus, slight modifica-
tions of tuning criteria for each FPR controller are proposed
based on a new Ly size.

IV. THE INCLUSION OF FRACTIONAL ORDER TERM IN
INTEGER ORDER PR CONTROL STRUCTURES

This Section is intended to give a brief overview on fractional
calculus and describe the rational approximation used to
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represent the fractional order s* term. Based on this approx-
imation, the FPR transfer functions corresponding to the PR
schemes showed in Section II can be computed. The rational
approximation of a fractional order term obtains transfer
functions composed by integer order polynomial terms and
thus it is possible to work as it was an integer order system,
as authors in [24], [25] considered. Otherwise, Matignon’s
theorem implications should be applied, as the authors in
[36], [37] did.

In [21]-[25] several continuous approximations to repre-
sent fractional order s* terms are described. Among them,
general fraction expansion, Carlson’s and Matsuda’s methods
use continuous fraction expansion and interpolation tech-
niques. In turn, Oustaloup’s and Chareff’s methods use curve
fitting and identification techniques. Apart from these, in [21]
several discrete approximatons to represent fractional order
s% terms are also listed, among which those using numerical
integration and power series or continuous fraction expansion
can be found. In [35] a systematic procedure is presented to
give a rational approximation to s¢, for 0 < a < 1, based on
continued fraction expansion technique.

The procedure presented on [35] is summarised as follows.
A set of polynomial coefficients must be calculated according
to the selected order type of the approximation and the value
of fractional exponent, . For 1*, 2nd 3rd and 4 order types,
the author in [35] gives the rational expression for s* in (5),
(6), (7) and (8), respectively.

a . Pos+pn

5% )
][ q108 + q11
« . P20S*+pas+pn
S2nd ~ ) (6)
q205- + q215 + g2
. P30s° + p31s? + p3as + p33
S3a 3 2 )
q3087 + q315° + q325 + G433
e Paos* + pa1s® + pars® + pazs + pas )

" qaost + qa1sd + qaas® + qgass + qas

The polynomial coefficients in (5), (6), (7) and (8) are cal-
culated as a function of the fractional exponent, «. The cor-
responding polynomial coefficients are defined in (9), (10),
(11) and (12), respectively.

piola) = gri(a) = (¢ + 1)
pi1(a) = qrola) = —(a — 1) 9

2
p2o(@) = g(e) = [ [ + i)
i=1

pa(@) = gu@=-2 [] (@@=

i=—2,2

2
pa(@) = qo(@) = [ J(@ i) (10)
i=1

3
p30(@) = gz(@) = [ J@+i)
i=1
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3
p31(@) = gan(@) = =3(@ = 3) [ [« +i)
i=2

3
pa(@) = gai(@) =3+ 3) ] J(@—i
i=2

3
paa(@) = go(e) = — [ [« — i) (11)
i=1

4

pao(@) = qaae) = [ [ +)

i=1

4 4
pai(@) = qaz(@) = —4] Je@ =) [ [l + )
i=3 i=3
4 4
par(@) = qu@) =6 Jo =) [ Jw + )
i=3 i=3
4
pa3(@) = qai(@) = =4 ] @ —i)
i=3

4
Paa(@) = qao(@) = [ J — ) (12)
i=1

The rational approximation of s* has been chosen in the 4
order type, since the error converges more rapidly than with
lower order types, as reported in [18]. In order to work with
fractional exponents greater than 1, an integer order term can
be multiplied by the selected rational approximation for s*.

V. EIGENVALUE TRAJECTORY ANALYSIS

Once the rational approximation for s* has been defined,
the open-loop FPR control structures can be computed
according to Section IV. In this Section, an eigenvalue tra-
jectory analysis is presented in order to clarify the effect of
varying the fractional exponent, «, in each FPR control struc-
ture. The control parameter values for each FPR closed-loop
system can be consulted in Appendix A.

A. FRACTIONAL ORDER IDEAL PROPORTIONAL
RESONANT CONTROLLER (FIPR)

The open-loop FIPR transfer function, GIQILPR, is indicated
in (13).

Sa

OL
Gripgr = kp + kim

(13)
The G%DR open-loop transfer function is included in the

closed-loop structure shown in (4) and the corresponding

closed-loop transfer function, GEILPR, is obtained.

The eigenvalue trajectories for Gg,LPR are shown in Fig. 5,
for o ranging from O to 2.

The colorbar in Fig. 5 links the o value with the color code
observed in the trajectories of eigenvalues. In the zoomed
area of Fig. 5, it can be observed that the trajectories for
a < 1 (dark and light blue-green) lay in the right side of
the complex plane and therefore indicate unstable behaviour
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FIGURE 5. Eigenvalue trajectory analysis for GEf,..

in the closed-loop control structure. Instead, for « > 1 the
eigenvalues move to the left half-plane and the stability is
recovered again once they cross the imaginary axis, when
a=1.

B. FRACTIONAL ORDER NON-IDEAL PROPORTIONAL
RESONANT CONTROLLER (FNIPR)

The open-loop FNIPR transfer function, G%%,,PR, is indicated
in (14).

wes®

ey 14
52 +2w,e8 + w? (14

Genipr = kp + ki
The G%%,,PR open-loop transfer function is included in the
closed-loop structure shown in (4) and the corresponding
closed-loop transfer function G%,IP is obtained.
The eigenvalue trajectories for G F,f”PR are shown in Fig. 6,
for ¢ ranging from 0 to 2.

6000 ‘ ‘ " ‘ 2
4000 X%
1.5
2000 1 L
<=
£ ot xM 1 1
<=
400
-2000 | NP 1
- 0.5
0 fro3f— = .
-4000 § 200 | qum
400 o
-6000 ‘ A2 0 1 0
-600 -400 -200 0
Re

CL

FIGURE 6. Eigenvalue trajectory analysis for Gp, ..

As seen in Fig. 6, the inclusion of a first order damping
term encloses the complete set of trajectories in the left half-
plane, with respect to the previous FIPR controller. Therefore,
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no instability issues are found for this configuration and the
assigned value of damping frequency, w.. For greater w,
values, the critical eigenvalues that were unstable in FIPR dia-
gram are further moved to the left and therefore, the stability
margin is increased.

C. FRACTIONAL ORDER COMPLEX VECTOR
PROPORTIONAL RESONANT CONTROLLER (FCVPR)

The open-loop FCVPR transfer function, GgéVPR, is indi-
cated in (15).

kps2 + kis“

52 + w? (15)

OL
Grcypr =
The G?éVPR open-loop transfer function is included in the
closed-loop structure shown in (4) and the corresponding
closed-loop transfer function GgéVPR is obtained.
The eigenvalue trajectories for G%VP » are shown in Fig. 7,
for o ranging from O to 2.

4
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FIGURE 7. Eigenvalue trajectory analysis for GE-

FCVPR"

The trajectories in Fig. 7 show that, while for « < 1 the
eigenvalues remain in the stable area, for 1 < o < 1.25 they
cross the imaginary axis and reach the unstable side of
the complex plane. The stability is eventually recovered for
o > 1.25.

D. FRACTIONAL ORDER PROPORTIONAL RESONANT
CONTROLLER WITH XFEEDBACK BRANCH (FPRXF)

The open-loop FPRXF transfer function, G%RXF, is indi-
cated in (16).

o

S
Goprxr = kp + ki 2+l (16)

The GgﬁRXF open-loop transfer function replaces the PRXF
current controller in Fig.2, and by including the jwL, feed-
back branch, the corresponding closed-loop transfer function
G%RXF is obtained.

The eigenvalue trajectories for G%,RXF are shown in Fig. 8,
for o ranging from O to 2.
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FIGURE 8. Eigenvalue trajectory analysis for GEf. .

In Fig. 8 the trajectories of eigenvalues are not symmetrical
with respect to the real axis due to the inclusion of the jwLy
feedback branch. Since the GIQIL’RXF function is identical to
the GPL,. function, the stability diagnostic for GS5y, .- via
eigenvalue trajectory is similar to the one obtained for G%PR'
In this sense, the eigenvalue trajectories covered by the range
a<1 show an unstable behaviour, as they lay in the right half-
plane. In contrast, for @ >1, the system turns to be stable,
as the trajectories lay in the left half-plane.

E. FRACTIONAL ORDER PROPORTIONAL RESONANT
CONTROLLER WITH XControl BRANCH (FPRXC)

The open-loop FPRXC transfer function, GgIL,RXC, is indi-
cated in (17).

SC{

Ghpxc = kp + ki 17)

s — jw

The G%L,R xc open-loop transfer function is included in the
closed-loop structure shown in (4) and the corresponding
closed-loop transfer function GS}L,R is obtained.

The eigenvalue trajectories for Gppy - are showninFig. 9,
for o ranging from O to 2. In Fig. 9 the trajectories of eigenval-
ues are not symmetrical with respect to the real axis due to the
presence of the imaginary term, jw, in the open-loop function,
GOLp - The trajectories in Fig. 9 are commpletely enclosed
in the left half-plane and therefore, the system is stable for the
entire range 0 < o < 2.

F. FRACTIONAL ORDER PROPORTIONAL RESONANT
CONTROLLER WITH X, BRANCH (FPRX2)
The open-loop FPRX2 transfer function, G%L,sz, is indicated
in (18).

GOL k4 ki (18)

FPRX2 = Fp TR T

The G]%sz open-loop transfer function replaces the
PRX2 current controller in Fig. 2, and by including the
jwLp, feedback branch, the corresponding closed-loop transfer
function G%sz is obtained.
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FIGURE 10. Eigenvalue trajectory analysis for G, .

The eigenvalue trajectories for G%RXZ are shown
in Fig. 10, for « ranging from O to 2.

In Fig. 10 the trajectories of eigenvalues are symmetrical
with respect to the real axis due to, on the one hand, the pres-
ence of the imaginary term, jw, in the open-loop function,
G%RXC, and on the other hand, the inclusion of the jwL,
feedback branch in the closed-loop configuration. Apart from
this, the trajectories in Fig. 10 are commpletely enclosed in
the left half-plane and therefore, the system is stable for the
entire range 0 < o < 2.

G. TUNING IMPLICATIONS

According to the analysis carried out along this Section, sev-
eral first tuning implications for each type of FPR topology
can be extracted.

« Both FIPR and FPRXF controllers are stable for 1 <
a < 2 and unstable for ¢ < 1. With regard to FPRXF
controller, the presence of the jwL;, feedback branch
in the closed-loop arrangement makes the eigenvalue
trajectories asymmetrical with respect to real axis.
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o The FNIPR controller is stable for the complete range
of 0 < o < 2. The presence of the damping frequency,
¢, has stabilised the unstable eigenvalues observed in
the FIPR case for 0 < o < 1. For greater w, values,
the critical eigenvalues will move further to the left side
of the plane and will increase the stability margin. For
lower w, values, the critical eigenvalues will be closer
to the imaginary axis and the stability margin will be
reduced.

o As for FCVPR controller, for ¢ < 1 the system is stable,
but when 1 < @ < 1.25 is unstable. Eventually, it recov-
ers stability for o« > 1.25.

o Withregard to FPRXC and PRX2 controllers, the trajec-
tories of eigenvalues are kept inside the left half-plane
for « ranging from O to 2, and therefore both controllers
maintain the stability of the system for the tested «
range. Besides, in FPRXC the presence of an imagi-
nary term in the open-loop transfer function makes the
eigenvalue trajectories asymmetrical with respect to the
real axis. In the case of PRX2 function, the presence of
both jwL;, feedback branch and the imaginary term in the
open-loop function, makes the trajectories symmetrical
with respect to the real axis.

VI. SIMULATIONS IN TRANSIENT REGIME FOR A VSC
CONNECTED TO A WEAK AC GRID

The eigenvalue analysis developed in Section V has provided
a first estimation of the ranges for the fractional index that
ensure the stability of each FPR system. However, other criti-
cal variables for stability, such as the weakness of the AC grid
to which the FPR-controlled VSC is connected, have not been
included in the analysis. Therefore, this section is intended
to consider the influence of a weak AC grid connection
in the analysis and, eventually, validate it via time-domain
simulations in an specific model application.

A. DESCRIPTION OF THE APPLICATION

The model application consists in a FPR-controlled VSC
connected to a weak AC grid with adjustable SCR values
and is implemented in Matlab-Simulink. It consists of a
set of MMCs governed by the different FPR control struc-
tures, where each of them is connected to a weak AC grid
with adjustable SCR. Each MMC is fed by a constant volt-
age source, which models an HVDC link connection in
steady-state operation with high content of renewables.

In Fig. 11, the general schematic for such model appli-
cation is presented, where the constant voltage source is
represented by Vpc.

Besides, the AC line is modelled by means of a
IT-equivalent section and the AC grid by its Thévenin equiv-
alent. The AC grid resistance and inductance, Rqc and Lyc,
are parameterised as a function of the AC grid apparent power
Sac,grid> Which is adjustable to simulate different weak AC
grid cases. These weak AC grid cases are obtained for differ-
ent values of the short-circuit ratio at the point of common
coupling (SCRpcc) and its corresponding apparent power,
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FIGURE 11. Application case: MMC connected to a weak AC grid with
adjustable short-circuit ratio (SCR).

TABLE 1. Parameters for the application case.

Parameter| Description Value
Vac AC voltage level 275kV
Vbeo DC voltage level 640 kV
Ly AC filter inductance 18 mH
Ry AC filter resistance 0.1

AC line inductance per kilometer | 0.4 mH/km
R AC line resistance per kilometer 0.125 Q/km
C AC line capacitance per kilometer | 0.22 uF/km
1 Length of the AC line 1 km
Syvmc | Apparent power of MMC 560 MVA
N Total number of submodules per | 200

MMC arm
Csm Capacitance of an MMC submodule | 20 puF
Rarm MMC arm resistance 1Q
Larm MMC arm inductance 18 mH

Spcc. The SCRpcc, Spcc, SAC,grida RAC and LAC values for
each weak AC grid scenario are presented in Appendix B.

In Table 1, the main physical parameters of the system
presented in Fig.11 are listed.

The MMC presents the arrangement indicated in Fig. 12.
The MMC has three legs, one per phase, and each leg has an
upper and a lower arm. The set of submodules (SM), N, are
distributed homogeneusly along each upper and lower arm.
In order to control the MMC, the insertion indices are used
to calculate the number of submodules that are inserted in
an arm. In this sense, an insertion index of 1 means that all
submodules within that arm are inserted, and therefore the
arm voltage reaches its maximum value, Vpc. In contrast,

Submodule

FIGURE 12. Detailed scheme of MMC.

52749



IEEE Access

M. Haro-Larrode et al.: On the Tuning of Fractional Order Resonant Controllers for VSC in Weak AC Grid Context

Ig,dq,ref Ig’aﬁyref Vg,th,ref €y,abc
- ‘ €v,aB
Ig,dq Coave + Ueyrer | babE
Vy.a8 Mape ==
DC n
W Cuanc F Ucreftuabe
‘u,abc VDC
W rer Ppcref izref U ref
O—Gpi
- + R
w, ) o ‘ Vbc/2
z Pacref i, = (i, +i;)/2

FIGURE 13. MMC global control scheme.

if the insertion index is zero, no submodule is inserted in that
arm and the arm voltage reaches zero.

The FPR current control function has been integrated in the
global control structure as indicated in Fig. 13. The objective
of this global control is to obtain the insertion indices, ny gpc
and ny, 4pc, which are calculated according to the expressions
showed in Fig. 13, and depend on two contributions, e, gp¢
and uc ; rr. These two magnitudes come fom the grid and
circulating current control schemes, respectively.

In Fig. 130,Lthe GYL. glLock (either GOhr, GO s GOL o,
Grprxr» Geprxc ©F Grpryo) is the open-loop FPR control
structure, which is highlighted in color and is included in the
internal grid current controller. For this purpose, the incom-
ing grid and reference currents in dq coordinates, I, 4, and
Ig dg,ref» are converted into af coordinates to adequate the
inputs for the FPR current controller. The outputs of the FPR
controller are the af voltage references, Vg o, ref, which are
substracted to o8 grid voltages and as a result, the error
ey,ap,ref 18 obtained. This magnitude is transformed into abc
frame and turns to be the e, 4, contribution.

Besides, the other contribution for the calculation of the
insertion indices iS uc ;e , and it is computed by means of the
circulating current controller. This is composed by an external
energy controller, which is responsible for the generation of
the circulating current reference, i er. The i, . signal is
obtained by integrating the error between the MMC energy
reference, W, ., and actual MMC energy, W, in z com-
ponent. The generated i, s current reference is compared
by the actual circulating current, i;, and the error integrated
by a PI function. The final output is summed to Vpc/2
and, eventually, the u, ; ,,; contribution from the circulating
current controller is obtained.

With these two contributions, ey gpe and uc ; ref, the inser-
tion indices for the lower and upper arm, ny 4 and ny gpc,
are calculated in abc coordinates and directly injected to the
MMC.

The parameters of the remaining control blocks in Fig. 13,
other than the FPR function, are detailed in the Appendix C.

B. ANALYSIS OF DYNAMIC RESPONSE VIA TIME-DOMAIN
SIMULATIONS

In the model application described in Subsection VI.A,
the different FPR control structures are tested one by one
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for a range of varying o, while several SCR values of the
weak AC grid are considered. The resulting time-domain
simulations in transient regime are hereafter presented for
each FPR controller.

The complete set of scenarios is enclosed in Table 2.

TABLE 2. Baseline scenarios for time-domain simulations in transient
regime.

FPR kp ki Sac,gria | SCRpcc
(MVA)
FIPR 1.5 50 800 1.47
FNIPR 1.5 50 800 1.47
FCVPR |[1.5 5000 1300 2.34
FPRXF |1.5 50 800 1.47
FPRXC |11 628 800 1.47
FPRX2 11 628 800 1.47

The baseline scenario for FCVPR controller is set with
a higher SCRpcc value, due to instability issues previously
reported in [18] and also due to the results from the eigenvalue
analysis in Section V, compared to other FPR controllers.
Apart from these values, a common value of resonant fre-
quency w = 314.159 rad/s is considered, as well as the AC
filter values, Ry = 0.1 Q and Ly = 18 mH. The FPR schemes
that have a complementary feedback branch, i.e. FPRXF and
FPRX2, have its feedback branch inductance tuned at L, =
0.4 mH. By considering the data listed in Table 2, for each
FPR-controlled VSC, the dq current setpoints in Fig. 14 are
injected as inputs to the FPR controller.

FIGURE 14. Current setpoints.

From now on, the behaviour of each FPR-controlled sys-
tem under these inputs is analysed via time-domain simu-
lations. The impact of each FPR control parameters on the
transient and steady-state behaviour is analysed afterwards
for each FPR control function.

1) FIPR-CONTROLLED VSC CONNECTED

TO A WEAK AC GRID

Since the results from eigenvalue analysis for FIPR control
structure pointed out & = 1 as the inflexion point below which
the system was unstable and above which the system was
stable, the time-domain simulations have also been separated
forthose 0 <o < 1and 1 <« <2.InFig. 15, the transient grid
current responses in p.u., I 4 and I, 4, are shown for different
« values belonging to 0 < o < 1.
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FIGURE 15. Simulation of FIPR in transient regime for0 <« < 1.
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FIGURE 16. Simulation of FIPR in transient regime for 1 <« < 2.

In Fig. 15, it can be seen that those currents associated to
o =0.25,0 =0.5 and @ = 0.75, diverge from their respective
set-points, Iy 4 rer and Ig 4 rof, TESpectively, and are unstable,
confirming the previous eigenvalue analysis and it is verified
when embedded in a weak AC grid. In contrast, the current
signals corresponding to & = 1 are both stable and converge
to the current set-points Iy g rer and Iy 4 ref-

The transient responses for those FIPR controlled systems
with o belonging to 1 < a < 2, are presented in Fig. 16.
These responses are, in turn, stable, as pinpointed previously
in the eigenvalue analysis. Moreover, it can be seen in the
zoomed areas that the increasing order of o reduces the
oscillatory peaks of the transient responses, I, 4 and I, 4.
Besides, the signals reach their setpoints Iy g ror and I 4 rer
in the steady-state regime.

2) FNIPR-CONTROLLED VSC CONNECTED

TO A WEAK AC GRID

The inclusion of a first order term, 2w.s, in the denomi-
nator contributes to stabilise the system, as reported in the
eigenvalue analysis. Therefore, for w. = Srad/s, the FNIPR-
controlled system response is stable, as seen in Fig. 17, for «
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FIGURE 17. Simulation of FNIPR in transient regime for0 <o < 1.

belonging to 0 < o < 1. However, the tracking capabilities are
very poor, as seen in Fig. 17. Although the I, 4 and I, 4 signals
converge to stable values, they do not match the /; 4 ,r and
I4 4 res set-points. The reason behind this behaviour is the
proximity to right half-plane of eigenvalue trajectories, for
o belongingto 0 <« < 1.

Nevertheless, for o values belonging to 1 < a < 2, the I 4
and I, , responses are stable and, besides, they converge to
their setpoints, as seen in Fig. 18.

1.5
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- = ~Iyala = 1.25) - - ~Ijq(a = 1.75) Ipy(a = 1.25) (o = 1.75)

FIGURE 18. Simulation of FNIPR in transient regime for 1 <« < 2.

Therefore, as « is increased over 1, the tracking capabilities
of the FNIPR controller improve and, in these cases, the oscil-
lation peak in the signals is reduced with respect to the
o = 1 scenario.

3) FCVPR-CONTROLLED VSC CONNECTED

TO A WEAK AC GRID

FCVPR controller also has an inflexion point regarding sta-
bility, which is ¢ = 1. Therefore, both 0 < o < 1 and
1 < o < 2 are examined separately. In the presence of a
weak AC grid, the I, 4 and I, ;, Tesponses corresponding to
0 < o <1 are presented in Fig. 19.
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FIGURE 19. Simulation of FCVPR in transient regime for 0 <« < 1.

As observed in the zoomed areas of Fig. 19, the responses
corresponding to & = 1, are much worse in terms of dynamic
behabiour than those with o < 1. In fact, as far as o adopts
lower values, the transient dynamic response improves.

However, for 1 < o < 2 the dyamic behaviour of /, 4 and
I, 4 signals vary significantly, as seen in Fig. 20.
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FIGURE 20. Simulation of FCVPR in transient regime for 1 < « < 2.

According to the theoretical eigenvalue analysis developed
in Section V, for « values greater than 1.25 the system trajec-
tories of FCVPR controller recovered the stability. However,
no weak AC grid scenario was considered in the theoretical
analysis, and therefore, the weak AC grid connection makes
the system unstable for the entire range of 1 < o < 2.

4) FPRXF-CONTROLLED VSC CONNECTED

TO A WEAK AC GRID

The results in Fig. 21 show the unstable responses of I, 4 and

Iy 4 for 0 < o < 1, as reported in the eigenvalue analysis.
Nevertheless, the I 4 and I, 4 signals are stable when o

belongs to 1 <« < 2, as showed in Fig. 22. In the stable cases,

as with FNIPR andd FIPR-controlled systems, the oscillation

peak is reduced, as far as « is increased above 1. Besides, not
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FIGURE 22. Simulation of FPRXF in transient regime for 1 <o < 2.

only the oscillation peak is reduced but also the oscillation
amplitude.

The tracking capabilities for « belonging to 1 < o < 2
are adequate as the I, 4 and I, signals converge to the
corresponding setpoints.

5) FPRXC-CONTROLLED VSC CONNECTED

TO A WEAK AC GRID

In the presence of a weak AC grid connection, the I, 4 and
I, 4 responses of a FPRXC-controlled systm are stable as
seen in Fig. 23, for the entire range of « belonging to 0
< o < 2. Each pair of I, 4 and I, , signals has negligible
difference with other pairs within the « range tested, being
almost coincident signals.

However, the tracking capabilities are very poor, as the
I, 4 and I, 4 responses do not match the setpoints. This can
be typically improved by changing the integral and or pro-
portional parameters of the controller. However, in order to
show the effect of adding a complementary feedback branch
on improving the tracking capabilities of the FPRXC con-
troller, no changes in k;, or k; are explored, but in contrast,
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FIGURE 23. Simulation of FPRXC in transient regime for 0 < « < 2.
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FIGURE 24. Simulation of FPRX2 in transient regime for 0 < o < 2.

the value of the feedback inductance, L, is modified in the
next subsection.

6) FPRX2-CONTROLLED VSC CONNECTED

TO A WEAK AC GRID

If a complementary feedback branch, jwL,, is added to
the FPRXC-controlled system, the grid current controller is
transformed into FPRX2. When FPRX2-controlled system
is implemented in a weak AC grid connection, being L, =
0.4 mH, the I, 4 and I, , responses are stable for the entire
range of « belonging to 0 < o < 2, as seen in Fig. 24.

However, the assigned value of L, is not sufficient to
improve the tracking capabilities of the FPRX2 controller,
and I, 4 and I, 4 signals present tracking errors with respect
t0 1 4, rer and I, 4 rer setpoints. Nevertheless, the FPRX2 con-
troller, unlike FPRX2, has an extra degree of freedom intro-
duced by the jwL, branch. By modifying the value of Ly,
the tracking of I, 4 rer and Ig 4 o Setpoints can be improved,
as presented in Fig.25.

In Fig.25, the effect of increasing the inductance of the
complementary feedback branch from 0.4 to ImH, is showed.
The adequate tracked response of I, 4 and I 4 to converge to
Iy 4 ref and Ig 4 rer is obtained with L, = 0.8 mH.
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FIGURE 25. Simulation of FPRX2 in transient regime from L, = 0.4mH to
Lp = TmH.

C. SENSITIVITY OF DYNAMIC RESPONSE ACCORDING TO
A DIFFERENT SIZE OF THE AC FILTER INDUCTANCE

In this subsection, the transient dynamic response of the
previous FPR-controlled MMC connected to a weak AC grid
is analysed for a different size of the AC filter inductance, Ly.
The impact of varying o and Ly is studied for the different
FPR-controlled systems. Besides, the maximum Ly changes
for each type of system is extracted in order not to compro-
mise stability.

1) FIPR-CONTROLLED VSC CONNECTED
TO A WEAK AC GRID
In the FIPR-controlled system, a 3Ly size for AC filter
inductance is considered. For this new value, the transient
behaviour of /, 4 and I , signals is presented in Fig. 26 for a
range of « values belongingtoto 1 <« < 1.15.

As pinpointed in Fig. 26, the increase of « from 1 to
1.15 reduces the time response of I, 4 and I, 4 signals, for
an AC filter inductance of 3Ly.

ly aq(P-U-)

0F e R
|
_02 L ‘a L
0 0.5 1 1.5
t(s)
—Lgla=11) —ILg4(a=11) ——-I (a=1) — I (a=11)
—Iyi(a =1.05) — I,4(a = 1.15) Iyq(e = 1.05) I, q(a = 1.15)

FIGURE 26. Simulation of FIPR for 3L; for different « values.
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2) FNIPR-CONTROLLED VSC CONNECTED

TO A WEAK AC GRID

In the FNIPR-controlled system, a 3Ly size is also con-
sidered. For this new value, the transient behaviour of Iy
and /I, 4 signals is presented in Fig. 27, for a belonging to

I <a <115
03|
88
84l It

01 02 03

1 6qPU)

-0.2 1
0 0.5 1 1.5
t(s)
—La(a=11) ——-Lala=11) —--I(a=1) —Iyg(a=11)
———Igala=1.05) — — I4(a = 1.15) I q(a=1.05) Iy .(a=1.15)

FIGURE 27. Simulation of FNIPR for 3L; for different « values.

The increase of « from 1 to 1.15 does not alter the settling
time of the I, 4 and I;, signals of the FNIPR-controlled
system as much as those of the FIPR- controlled system,
but slight dynamic improvements in the transient regime are
observed.

3) FCVPR-CONTROLLED VSC CONNECTED

TO A WEAK AC GRID

For the case of FCVPR-controlled system, the new Ly size
has to be lower than with the FIPR and FNIPR-controlled
systems, in order not to compromise stability. In Fig. 28,
the I, 4 and I, , responses for 1.5Ly are showed when «
belongs to 0.65 < o < 0.75 range.

1 1
09“| T
03“‘ e
| o o7 0.2 04 06
= 05 i
] 0
3 W 1
vU'
-q 02 1 1.2 14
_U’ |
0 o
05 : : :
0 0.5 1 15
t(s)
I.i(a = 0.75) I,.a(a = 0.65) I (a=0.75) I,.(a = 0.65)
Ii(a=0.7) Li(@=06) —— I (a=07) ——1I,(a=0.6)

FIGURE 28. Simulation of FCVPR for 1.5L; for different « values.

It can be seen in Fig. 28 that as far as « is decreased
from 0.75 to 0.65, the transient response is slightly improved,
as lower oscillation amplitude is observed in general.
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It must be noted that « = 0.75 is the closest value to the
borders of stability, as greater values with the new Ly size,
produce instability.

4) FPRXF-CONTROLLED VSC CONNECTED
TO A WEAK AC GRID

In Fig. 29, the transient responses of I, 4 and I, , for a new
size of 3Ly are presented for 1 < o < 1.15.

1

0.8 iu
— 0.6
3 0 -
o 0.0 o
g 04 0 ﬁ
o i o015 F
0.2 1011 12
0 i 5
“ J‘;r
-0.2 - - -
0.5 1 1.5
t(s)
—La(a=11) —ILgla=11) ——-L(a=1) ——I,(a=11)
— I a(a =1.05) Iya(o = 1.15) Ipq(0 = 1.05) Iyq(a = 1.15)

FIGURE 29. Simulation of FPRXF for 3L; for different « values.

As with FIPR-controlled system, the increase of o from
1 to 1.15, reduces the settling time of the responses, at the
cost of increasing the peak value. Nevertheless, intermediate
values such as o = 1.1, reduce the settling time and do not
increase significanlty the oscillation amplitude.

5) FPRXC- AND FPRX2-CONTROLLED VSC CONNECTED

TO A WEAK AC GRID

The extended form of FPRXC with the complementary feed-
back branch, i.e. FPRX2, has been chosen over FPRXC,
as PRX2 allows for an extra degree of freedom introduced
by the jwL;, feedback branch.

As discussed before, by tuning L, = 0.8 mH instead
of 0.4 mH, the tracking errors in I, 4 and I, , are removed,
whereas FPRXC does not track correctly. For this reason,
L, = 0.8 mH is initially chosen in order to study the transient
response of I 4 and I, , when a new size of 3Ly is set.

In Fig. 30, the I, 4 and I, , responses are showed for
o = 1 and L, = 0.8 mH and tracking errors appear again.
Then, a second case of « = 1 with an increased L; to
2.65 mH is showed, and it turns out that the tracking errors
are removed.

The rest of I, 4 and I, , responses in Fig. 30 are provided
with L, = 2.65 mH, and « is varied from 0.5 to 1.75. In these
cases, the variation of « does not have any significant effect
on the improvement of the transient dynamic response.

D. COMBINED TUNING OF FRACTIONAL EXPONENT
VALUES WITH OTHER CONTROL PARAMETERS

Along this Section different time-domain simulations of the
grid currents at the PCC of each FPR-controlled MMC
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FIGURE 30. Simulation of FPRX2 for 3L; for different o« and L, values.

have been obtained in order to compare their transient and
steady-state behaviour.

As aresult, the previous fractional exponent values of each
FPR controller obtained by eigenvalue analysis have been
verified by time domain simulations in a specific application,
where the FPR-controlled MMC is connected to a weak AC
grid. Several new tuning criteria have been detected while
obtaining the simulations, given a set of fixed proportional
and integral parameters.

For the FIPR and FPRXF controlled system, « values
lower than 1 drive the system to instability as deduced from
eigenvalue analysis and time-domain simulations, since the
I4 44 currents diverged from their set-points. Nevertheless,
whenever a first order damping term, 2w.s, was added in
the denominator of the open-loop FIPR function, the eigen-
value trajectories remained in the left half-plane and the
Iy 44 currents were stable. In this sense, the transformation
into FNIPR controller stabilised the eigenvalues of the FIPR
controller and this was also shown in the time-domain tran-
sient simulations. However, the tracking capabilities of the
FNIPR-controlled system with o < 1 were poor, as the I 44
currents did not match their setpoints Iy 4g. ref .

However, for o > 1, FIPR-, FNIPR- and FPRXF-controlled
systems the I, 4, currents were both stable and convergent
to their respective setpoints, Ig 44, rof - Besides, the increase of
fractional exponent o between 1 and 2 improved the dynamic
transient response in terms of oscillatory peak and amplitude
reduction with respect to the controller tuned with o = 1.

With regard to the FCVPR-controlled system, the eigen-
value analysis determined that for « < 1, the system was
stable and however, for 1 < o < 1.25 the system turned to
be unstable. For greater values, i.e. 1.25 < o < 2, the system
recovered the stability, but it was without considering the
effects of a weak AC grid. In the time-domain simulations
of a FCVPR-controlled system with o < 1, the I, 4, currents
were stable and convergent to their setpoints, I, 4q, ref - In such
case, the transient behaviour was improved as long as o was
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decreased from 1 to 0.25, in terms of oscillatory peak and
amplitude reduction. For @ > 1, the I, 4, currents of the
FCVPR-controlled system lost the stability and oscillated sig-
nificantly. The effect of including a weak AC grid connection
makes the system unstable also for ¢ >1.25.

The FPRXC and FPRX2 controllers were reported to be
stable for the entire range of « belonging to 0 < o < 2, accord-
ing to the eigenvalue trajectory analysis. The time-domain
simulations of the FPRXC and FPRX2-controlled systems
also verified this and the effect of varying « did not change the
transient behaviour significantly. However, the I, 4, currents
did not match the setpoints, Iy 4, ref . By tuning the L, value of
the feedback branch of PRX2 controller from 0.4 to 0.8 mH,
the PRX2 controller managed to drive the I, 4, currents to
match their setpoints again.

When a different Ly size is considered, the tuning of
the fractional exponent has been reconsidered for each
FPR-controlled system.

For FIPR-, FNIPR- and FPRXF-controlled systems,
the new size of the AC filter inductance has been set to 3Ly.
With this new size, the increase of « from 1 to 1.15 changes
the dynamic behaviour of the I, 4, signals. For FIPR- and
FPRXF-controlled systems, o« = 1 and o = 1.15, are the «
values with greatest and lowest time response of I, 4, signals,
respectively. However, « = 1.15 is the case with greatest
oscillation amplitude. Therefore, an intermediate value, ¢ =
1.1, presents a lower time response than with « = 1 and
lower oscillation amplitude than with « = 1.15. In the case
of FNIPR-controlled system, its performance is similar as
with the FIPR or FPRXF controllers, but their effects while
varying « are less noticeable.

In the case of FCVPR-controlled system, a new size
of 1.5Ly has been set. With this new size, the decrease of
a from 0.75 to 0.6 provides benefits in terms of stability,
being the systems with @ = 0.75 and 0.6 those that present
the greatest and lowest time response, respectively. However,
since the oscillation amplitude is high at both extremes of the
tested « interval, an intermediate o = 0.65 is more convenient
for the FCVPR-controlled system tuned with 1.5L.

As for the FPRXC- and FPRX2- controlled systems, a new
1.5Ly size has been set. With this new size, the change in «
does not have a significant effect on the dynamic transient
response, and the I, 44 ,or Teferences have been uncorrectly
tracked again. In order to solve this issue, the L, value of
the complementary feedback branch has been increased from
0.8 mH to 2.65 mH and the final I, 4, currents match their
references properly.

VII. CONCLUSION

A novel methodology for tuning diverse fractional order pro-
portional resonant controllers in a weak AC grid environment
has been proposed in this paper. In this methodology the role
of fractional exponent, «, has been widely studied, as well
as the combined tuning of « with other key control parame-
ters, such as the damping frequency, w.,and the inductance
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of complementary feedback branch, L,. Appart from this,
the influence of the AC filter size, Ly, on the dynamic tran-
sient response has been analysed.

By means of eigenvalue trajectory analysis, the impact
of the fractional exponent, «, on the stability of each
FPR control structure has been clarified. Besides, the range
of o values reported by eigenvalue analysis have been
verified via time-domain simulations in an application,
where each FPR-controlled MMC is connected to a weak
AC grid.

The time-domain simulations have shown the dynamic
transient behaviour of different FPR control structures and
has helped to build a tuning criteria to tune the fractional
exponent, «, in combination with other control parameters w,
or L to improve the transient responses of grid currents and
the tracking capabilities of each FPR controller. Moreover,
this analysis has been carried out with an increased Ly size,
which pointed out minor resizings of the fractional exponent,
o, and of the feedback branch inductance, L, to guarantee an
adequate transient response.

APPENDIX A

PARAMETERS FOR EIGENVALUE ANALYSIS

A. GENERAL PARAMETERS COMMON TO EACH FPR
CONTROLLER

Rr = 0.1Q
Lf = 18 mH
w = 314.159 rad/s

B. FIPR
ky, =15
ki = 50
C. FNIPR
kp, =15
ki = 50
we = Srad/s
D. FCVPR
ky =15
ki = 5000
E. FPRXF
kp =15
ki = 50
L, = 0.4 mH

52756

F. FPRXC
ky = 11
ki = 628
G. FPRX2
ky = 11
ki = 628
Ly, = 0.4 mH
APPENDIX B
AC GRID PARAMETERS
SCRpcc | Spcc Sac.grid | Rac Lac
(MVA) (MVA) () (H)
2.34 1311 1300 5.7 0.182
1.47 825 800 9.3 0.292
APPENDIX C

CIRCULATING GRID CONTROL PARAMETERS
A. PROPORTIONAL INTEGRAL CONTROLLERS:
PI, AND PI,

Proportional gain k, = 10

Integral gain k; = 100
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