TY - Journal Article AU - Calderón-Uríszar-Aldaca, Iñigo AU - Briz, Estibaliz AU - Matanza, Amaia AU - Martin, Ulises AU - Bastidas, David M. TI - Corrosion Fatigue Numerical Model for Austenitic and Lean-Duplex Stainless-Steel Rebars Exposed to Marine Environments PY - 2020 PB - Multidisciplinary Digital Publishing Institute (MDPI) AB - Steel rebars of structures exposed to cyclic loadings and marine environments su_er an accelerated deterioration process by corrosion fatigue, causing catastrophic failure before service life ends. Hence, stainless steel rebars have been emerging as a way of mitigating pitting corrosion contribution to fatigue, despite the increased cost. The present study proposes a corrosion fatigue semiempirical model. Di_erent samples of rebars made of carbon steel, 304L austenitic (ASS), 316L ASS, 2205 duplex (DSS), 2304 lean duplex stainless steels (LDSS), and 2001 LDSS have been embedded in concrete and exposed to a tidal marine environment for 6 months. Corrosion rates of each steel rebar have been obtained from direct measurement and, considering rebar standard requirements for fatigue and fracture mechanics, an iterative numerical model has been developed to derive the cycles to failure for each stress range level. The model resulted in a corrosion pushing factor for each material, able to be used as an accelerating coe_cient for the Palmgren-Miner linear rule and as a performance indicator. Carbon steel showed the worst performance, while 2001 LDSS performed 1.5 times better with the best cost-performance ratio, and finally 2205 DSS performed 1.5 times better than 2001 LDSS. UR - http://hdl.handle.net/11556/989 DX - 10.3390/met10091217 ER -