TY - Journal Article AU - Ochoa-Gómez, José R. AU - Fernández-Carretero, Francisco AU - Río-Pérez, Francisca AU - García-Luis, Alberto AU - Roncal, Tomás AU - García-Suárez, Eduardo J. TI - Electrosynthesis of 2,3-butanediol and methyl ethyl ketone from acetoin in flow cells PY - 2019 PB - Royal Society of Chemistry AB - Acetoin could shortly become a platform molecule due to current progress in fermentation technology, the megatrend for shifting from an oil-based economy to one based on biomass, the quest for green manufacturing processes and its two highly reactive carbonyl and hydroxyl moieties. In this paper, the successful electro-conversion of acetoin into two valuable chemicals, 2,3-butandiol (2,3-BD) and methyl ethyl ketone (MEK), at constant electrical current in aqueous phase at room temperature using both divided and undivided 20 cm2 filter-press flow cells under experimental conditions suitable for industrial production is reported. Cathode material is the key parameter to drive the electroreduction towards one or another chemical. 2,3-BD is the major chemical produced by electrohydrogenation when low hydrogen overvoltage cathodes, such as Pt and Ni, of high surface area obtained by PVD coating on a carbon gas diffusion layer are used, while MEK is the principal product produced by electrohydrogenolysis when high hydrogen overvoltage cathodes, such as graphite, Pb and Cd foils, are employed. 2,3-BD and MEK can be obtained, respectively, in 92.8% and 85.7% selectivities, 71.7% and 80.4% current efficiencies, with 1.21 and 1.08 kg.h-1.m-2 productivities and power consumptions of 2.94 and 4.1 kWh.kg-1 using undivided cells and aqueous K2HPO4 electrolysis media at pHs of 3.6 and 5.5. The reported electroconversion of acetoin is highly flexible because 2,3-BD and MEK can be produced by changing just the cathode but using the same cell, with the same electrolyte at the same current density. SN - 1463-9262 UR - http://hdl.handle.net/11556/666 DX - 10.1039/C8GC03028F ER -