TY - Journal Article AU - Picon, Artzai AU - San-Emeterio, Miguel G. AU - Bereciartua-Perez, Arantza AU - Klukas, Christian AU - Eggers, Till AU - Navarra-Mestre, Ramon TI - Deep learning-based segmentation of multiple species of weeds and corn crop using synthetic and real image datasets PY - 2022 PB - Elsevier AB - Weeds compete with productive crops for soil, nutrients and sunlight and are therefore a major contributor to crop yield loss, which is why safer and more effective herbicide products are continually being developed. Digital evaluation tools to automate and homogenize field measurements are of vital importance to accelerate their development. However, the development of these tools requires the generation of semantic segmentation datasets, which is a complex, time-consuming and not easily affordable task. In this paper, we present a deep learning segmentation model that is able to distinguish between different plant species at the pixel level. First, we have generated three extensive datasets targeting one crop species (Zea mays), three grass species (Setaria verticillata, Digitaria sanguinalis, Echinochloa crus-galli) and three broadleaf species (Abutilon theophrasti, Chenopodium albums, Amaranthus retroflexus). The first dataset consists of real field images that were manually annotated. The second dataset is composed of images of plots where only one species is present at a time and the third type of dataset was synthetically generated from images of individual plants mimicking the distribution of real field images. Second, we have proposed a semantic segmentation architecture by extending a PSPNet architecture with an auxiliary classification loss to aid model convergence. Our results show that the network performance increases when supplementing the real field image dataset with the other types of datasets without increasing the manual annotation effort. More specifically, the use of the real field dataset obtains a Dice-Søensen Coefficient (DSC) score of 25.32. This performance increases when this dataset is combined with the single-species class dataset (DSC=47.97) or the synthetic dataset (DSC=45.20). As for the proposed model, the ablation method shows that by removing the proposed auxiliary classification loss, the segmentation performance decreases (DSC=45.96) compared to the proposed architecture method (DSC=47.97). The proposed method shows better performance than the current state of the art. In addition, the use of proposed single-species or synthetic datasets can double the performance of the algorithm than when using real datasets without additional manual annotation effort. SN - 0168-1699 UR - http://hdl.handle.net/11556/1338 DX - 10.1016/j.compag.2022.106719 ER -