TY - Journal Article AU - Martínez-Pérez, Paula AU - Ponce-Alcántara, Salvador AU - Murillo, Nieves AU - Pérez-Márquez, Ana AU - Maudes, Jon AU - Peraile, Inés AU - González-López, Laura AU - Gil-García, Matilde AU - Lorenzo-Lozano, Paloma AU - García-Rupérez, Jaime TI - Label-Free Optical Biosensing Using Low-Cost Electrospun Polymeric Nanofibers PY - 2020 PB - Multidisciplinary Digital Publishing Institute (MDPI) AB - Polymeric nanofiber matrices are promising structures to develop biosensing devices due to their easy and affordable large-scale fabrication and their high surface-to-volume ratio. In this work, the suitability of a polyamide 6 nanofiber matrix for the development of a label-free and real-time Fabry–Pérot cavity-based optical biosensor was studied. For such aim, in-flow biofunctionalization of nanofibers with antibodies, bound through a protein A/G layer, and specific biodetection of 10 µg/mL bovine serum albumin (BSA) were carried out. Both processes were successfully monitored via reflectivity measurements in real-time without labels and their reproducibility was demonstrated when different polymeric nanofiber matrices from the same electrospinning batch were employed as transducers. These results demonstrate not only the suitability of correctly biofunctionalized polyamide 6 nanofiber matrices to be employed for real-time and label-free specific biodetection purposes, but also the potential of electrospinning technique to create affordable and easy-to-fabricate at large scale optical transducers with a reproducible performance. UR - http://hdl.handle.net/11556/1030 DX - 10.3390/chemosensors8040119 ER -