Show simple item record

dc.contributor.authorNordio, Maria
dc.contributor.authorMelendez, Jon
dc.contributor.authorvan Sint Annaland, Martin
dc.contributor.authorPacheco Tanaka, D. Alfredo
dc.contributor.authorLlosa Tanco, Margot
dc.contributor.authorGallucci, Fausto
dc.date.accessioned2020-09-14T15:45:03Z
dc.date.available2020-09-14T15:45:03Z
dc.date.issued2020-10
dc.identifier.citationNordio, Maria, Jon Melendez, Martin van Sint Annaland, D. Alfredo Pacheco Tanaka, Margot Llosa Tanco, and Fausto Gallucci. “Comparison Between Carbon Molecular Sieve and Pd-Ag Membranes in H2-CH4 Separation at High Pressure.” International Journal of Hydrogen Energy 45, no. 53 (October 2020): 28876–28892. doi:10.1016/j.ijhydene.2020.07.191.
dc.identifier.issn0360-3199en
dc.identifier.urihttp://hdl.handle.net/11556/980
dc.description.abstractFrom a permeability and selectivity perspective, supported thin-film Pd–Ag membranes are the best candidates for high-purity hydrogen recovery for methane-hydrogen mixtures from the natural gas grid. However, the high hydrogen flux also results in induced bulk-to-membrane mass transfer limitations (concentration polarization) especially when working at low hydrogen concentration and high pressure, which further reduces the hydrogen permeance in the presence of mixtures. Additionally, Pd is a precious metal and its price is lately increasing dramatically. The use of inexpensive CMSM could become a promising alternative. In this manuscript, a detailed comparison between these two membrane technologies, operating under the same working pressure and mixtures, is presented. First, the permeation properties of CMSM and Pd–Ag membranes are compared in terms of permeance and purity, and subsequently, making use of this experimental investigation, an economic evaluation including capital and variable costs has been performed for a separation system to recover 25 kg/day of hydrogen from a methane-hydrogen mixture. To widen the perspective, also a sensitivity analysis by changing the pressure difference, membrane lifetime, membrane support cost and cost of Pd/Ag membrane recovery has been considered. The results show that at high pressure the use of CMSM is to more economic than the Pd-based membranes at the same recovery and similar purity.en
dc.description.sponsorshipThis project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking under grant agree-ment No 700355. This Joint Undertaking receives support fromthe European Union’s Horizon 2020 research and innovation.en
dc.language.isoengen
dc.publisherElsevier Ltden
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleComparison between carbon molecular sieve and Pd-Ag membranes in H2-CH4 separation at high pressureen
dc.typearticleen
dc.identifier.doi10.1016/j.ijhydene.2020.07.191en
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/700355/EU/Flexible Hybrid separation system for H2 recovery from NG Grids/HyGriden
dc.rights.accessRightsopenAccessen
dc.subject.keywordsCMSMen
dc.subject.keywordsPd–Ag membraneen
dc.subject.keywordsConcentration polarizationen
dc.subject.keywordsPurityen
dc.subject.keywordsFinal cost of separationen
dc.issue.number53
dc.journal.titleInternational Journal of Hydrogen Energyen
dc.page.final28892
dc.page.initial28876
dc.volume.number45


Files in this item

Thumbnail

    Show simple item record

    Attribution 4.0 InternationalExcept where otherwise noted, this item's license is described as Attribution 4.0 International