Show simple item record

dc.contributor.authorPicon, Artzai
dc.contributor.authorIrusta, Unai
dc.contributor.authorÁlvarez-Gila, Aitor
dc.contributor.authorAramendi, Elisabete
dc.contributor.authorAlonso-Atienza, Felipe
dc.contributor.authorFiguera, Carlos
dc.contributor.authorAyala, Unai
dc.contributor.authorGarrote, Estibaliz
dc.contributor.authorWik, Lars
dc.contributor.authorKramer-Johansen, Jo
dc.contributor.authorEftestøl, Trygve
dc.date.accessioned2019-05-22T10:17:57Z
dc.date.available2019-05-22T10:17:57Z
dc.date.issued2019-05-20
dc.identifier.citationPicon A, Irusta U, Álvarez-Gila A, Aramendi E, Alonso-Atienza F, Figuera C, et al. (2019) Mixed convolutional and long short-term memory network for the detection of lethal ventricular arrhythmia. PLoS ONE 14(5): e0216756. https://doi.org/10.1371/journal.pone.0216756en
dc.identifier.issn1932-6203en
dc.identifier.urihttp://hdl.handle.net/11556/717
dc.description.abstractEarly defibrillation by an automated external defibrillator (AED) is key for the survival of out-of-hospital cardiac arrest (OHCA) patients. ECG feature extraction and machine learning have been successfully used to detect ventricular fibrillation (VF) in AED shock decision algorithms. Recently, deep learning architectures based on 1D Convolutional Neural Networks (CNN) have been proposed for this task. This study introduces a deep learning architecture based on 1D-CNN layers and a Long Short-Term Memory (LSTM) network for the detection of VF. Two datasets were used, one from public repositories of Holter recordings captured at the onset of the arrhythmia, and a second from OHCA patients obtained minutes after the onset of the arrest. Data was partitioned patient-wise into training (80%) to design the classifiers, and test (20%) to report the results. The proposed architecture was compared to 1D-CNN only deep learners, and to a classical approach based on VF-detection features and a support vector machine (SVM) classifier. The algorithms were evaluated in terms of balanced accuracy (BAC), the unweighted mean of the sensitivity (Se) and specificity (Sp). The BAC, Se, and Sp of the architecture for 4-s ECG segments was 99.3%, 99.7%, and 98.9% for the public data, and 98.0%, 99.2%, and 96.7% for OHCA data. The proposed architecture outperformed all other classifiers by at least 0.3-points in BAC in the public data, and by 2.2-points in the OHCA data. The architecture met the 95% Sp and 90% Se requirements of the American Heart Association in both datasets for segment lengths as short as 3-s. This is, to the best of our knowledge, the most accurate VF detection algorithm to date, especially on OHCA data, and it would enable an accurate shock no shock diagnosis in a very short time.en
dc.description.sponsorshipThis study was supported by the Ministerio de Economía, Industria y Competitividad, Gobierno de España (ES) (TEC-2015-64678-R) to UI and EA and by Euskal Herriko Unibertsitatea (ES) (GIU17/031) to UI and EA. The funders, Tecnalia Research and Innovation and Banco Bilbao Vizcaya Argentaria (BBVA), provided support in the form of salaries for authors AP, AA, FAA, CF, EG, but did not have any additional role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. The specific roles of these authors are articulated in the author contributions section.en
dc.language.isoengen
dc.publisherPublic Library of Scienceen
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleMixed convolutional and long short-term memory network for the detection of lethal ventricular arrhythmiaen
dc.typearticleen
dc.identifier.doi10.1371/journal.pone.0216756en
dc.rights.accessRightsopenAccessen
dc.subject.keywordsLethal ventricular arrhythmiaen
dc.subject.keywordsAEDen
dc.subject.keywordsVFen
dc.subject.keywordsOHCAen
dc.subject.keywordsMixed convolutional and long short-term memory networken
dc.issue.number5en
dc.journal.titlePLOS ONEen
dc.page.initiale0216756en
dc.volume.number14en


Files in this item

Thumbnail

    Show simple item record

    Attribution 4.0 InternationalExcept where otherwise noted, this item's license is described as Attribution 4.0 International