Show simple item record

dc.contributor.authorSpüler, Martin
dc.contributor.authorLópez-Larraz, Eduardo
dc.contributor.authorRamos-Murguialday, Ander
dc.date.accessioned2018-11-29T11:59:54Z
dc.date.available2018-11-29T11:59:54Z
dc.date.issued2018-11-20
dc.identifier.citationSpüler, Martin, Eduardo López-Larraz, and Ander Ramos-Murguialday. “On the Design of EEG-Based Movement Decoders for Completely Paralyzed Stroke Patients.” Journal of NeuroEngineering and Rehabilitation 15, no. 1 (November 20, 2018). doi:10.1186/s12984-018-0438-z.en
dc.identifier.issn1743-0003en
dc.identifier.urihttp://hdl.handle.net/11556/662
dc.description.abstractBackground: Brain machine interface (BMI) technology has demonstrated its efficacy for rehabilitation of paralyzed chronic stroke patients. The critical component in BMI-training consists of the associative connection (contingency) between the intention and the feedback provided. However, the relationship between the BMI design and its performance in stroke patients is still an open question. Methods: In this study we compare different methodologies to design a BMI for rehabilitation and evaluate their effects on movement intention decoding performance. We analyze the data of 37 chronic stroke patients who underwent 4 weeks of BMI intervention with different types of association between their brain activity and the proprioceptive feedback. We simulate the pseudo-online performance that a BMI would have under different conditions, varying: (1) the cortical source of activity (i.e., ipsilesional, contralesional, bihemispheric), (2) the type of spatial filter applied, (3) the EEG frequency band, (4) the type of classifier; and also evaluated the use of residual EMG activity to decode the movement intentions. Results: We observed a significant influence of the different BMI designs on the obtained performances. Our results revealed that using bihemispheric beta activity with a common average reference and an adaptive support vector machine led to the best classification results. Furthermore, the decoding results based on brain activity were significantly higher than those based on muscle activity. Conclusions: This paper underscores the relevance of the different parameters used to decode movement, using EEG in severely paralyzed stroke patients. We demonstrated significant differences in performance for the different designs, which supports further research that should elucidate if those approaches leading to higher accuracies also induce higher motor recovery in paralyzed stroke patients.en
dc.description.sponsorshipThis study was funded by the Baden-Württemberg Stiftung (GRUENS ROB-1), the Deutsche Forschungsgemeinschaft (DFG, Koselleck and Grant SP 1533/2– 1), the Bundesministerium für Bildung und Forschung BMBF: MOTORBIC (FKZ 13GW0053) and AMORSA (FKZ 16SV7754), the fortüne-Program of the University of Tübingen (2422-0-1 and 2452-0-0) and the Basque Government Science Program (EXOTEK: KK 2016/00083).en
dc.language.isoengen
dc.publisherNLM (Medline)en
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleOn the design of EEG-based movement decoders for completely paralyzed stroke patientsen
dc.typearticleen
dc.identifier.doi10.1186/s12984-018-0438-zen
dc.rights.accessRightsopenAccessen
dc.subject.keywordsNeuroprosthesesen
dc.subject.keywordsBrain machine interface (BMI)en
dc.subject.keywordsRehabilitation roboticsen
dc.subject.keywordsProprioceptive feedbacken
dc.subject.keywordsMotor rehabilitationen
dc.subject.keywordsStrokeen
dc.subject.keywordsNeurotechnologyen
dc.issue.number1en
dc.journal.titleJournal of NeuroEngineering and Rehabilitationen
dc.page.initial110en
dc.volume.number15en


Files in this item

Thumbnail

    Show simple item record

    Attribution 4.0 InternationalExcept where otherwise noted, this item's license is described as Attribution 4.0 International