Show simple item record

dc.contributor.authorMalešević, Jovana
dc.contributor.authorDedijer Dujović, Suzana
dc.contributor.authorSavić, Andrej M.
dc.contributor.authorKonstantinović, Ljubica
dc.contributor.authorVidaković, Aleksandra
dc.contributor.authorBijelić, Goran
dc.contributor.authorMalešević, Nebojša
dc.contributor.authorKeller, Thierry
dc.date.accessioned2017-12-12T16:08:46Z
dc.date.available2017-12-12T16:08:46Z
dc.date.issued2017-07-03
dc.identifier.citationMalešević, Jovana, Suzana Dedijer Dujović, Andrej M. Savić, Ljubica Konstantinović, Aleksandra Vidaković, Goran Bijelić, Nebojša Malešević, and Thierry Keller. “A Decision Support System for Electrode Shaping in Multi-Pad FES Foot Drop Correction.” Journal of NeuroEngineering and Rehabilitation 14, no. 1 (July 3, 2017). doi:10.1186/s12984-017-0275-5.en
dc.identifier.issn1743-0003en
dc.identifier.urihttp://hdl.handle.net/11556/473
dc.description.abstractBackground: Functional electrical stimulation (FES) can be applied as an assistive and therapeutic aid in the rehabilitation of foot drop. Transcutaneous multi-pad electrodes can increase the selectivity of stimulation; however, shaping the stimulation electrode becomes increasingly complex with an increasing number of possible stimulation sites. We described and tested a novel decision support system (DSS) to facilitate the process of multi-pad stimulation electrode shaping. The DSS is part of a system for drop foot treatment that comprises a customdesigned multi-pad electrode, an electrical stimulator, and an inertial measurement unit. Methods: The system was tested in ten stroke survivors (3-96 months post stroke) with foot drop over 20 daily sessions. The DSS output suggested stimulation pads and parameters based on muscle twitch responses to short stimulus trains. The DSS ranked combinations of pads and current amplitudes based on a novel measurement of the quality of the induced movement and classified them based on the movement direction (dorsiflexion, plantar flexion, eversion and inversion) of the paretic foot. The efficacy of the DSS in providing satisfactory pad-current amplitude choices for shaping the stimulation electrode was evaluated by trained clinicians. The range of paretic foot motion was used as a quality indicator for the chosen patterns. Results: The results suggest that the DSS output was highly effective in creating optimized FES patterns. The position and number of pads included showed pronounced inter-patient and inter-session variability; however, zones for inducing dorsiflexion and plantar flexion within the multi-pad electrode were clearly separated. The range of motion achieved with FES was significantly greater than the corresponding active range of motion (p < 0.05) during the first three weeks of therapy. Conclusions: The proposed DSS in combination with a custom multi-pad electrode design covering the branches of peroneal and tibial nerves proved to be an effective tool for producing both the dorsiflexion and plantar flexion of a paretic foot. The results support the use of multi-pad electrode technology in combination with automatic electrode shaping algorithms for the rehabilitation of foot drop.en
dc.description.sponsorshipThe research has been supported in part by grants of the Basque Government (PI2013-10), the ERA-NET EU/MINECO project (INDIGO-DBT2-051) and by the Ministry of Education, Science and Technological Development of Serbia (Project no. 175016).en
dc.language.isoengen
dc.publisherBIOMED CENTRAL LTD, 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLANDen
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleA decision support system for electrode shaping in multi-pad FES foot drop correctionen
dc.typearticleen
dc.identifier.doi10.1186/s12984-017-0275-5en
dc.isiYesen
dc.rights.accessRightsopenAccessen
dc.subject.keywordsDecision support systemen
dc.subject.keywordsFoot dropen
dc.subject.keywordsFunctional electrical stimulationen
dc.subject.keywordsMulti-pad electrodeen
dc.subject.keywordsStrokeen
dc.issue.number1en
dc.journal.titleJournal of NeuroEngineering and Rehabilitationen
dc.volume.number14en


Files in this item

Thumbnail

    Show simple item record

    Attribution 4.0 InternationalExcept where otherwise noted, this item's license is described as Attribution 4.0 International