Rank Aggregation for Non-stationary Data Streams
Date
2021-09-11Keywords
Preference learning
Rank aggregation
Borda
Evolving preferences
Voting
Concept drift
Abstract
The problem of learning over non-stationary ranking streams arises naturally, particularly in recommender systems. The rankings represent the preferences of a population, and the non-stationarity means that the distribution of preferences changes over time. We propose an algorithm that learns the current distribution of ranking in an online manner. The bottleneck of this process is a rank aggregation problem.
We propose a generalization of the Borda algorithm for non-stationary ranking streams. As a main result, we bound the minimum number of samples required to output the ground truth with high probability. Besides, we show how the optimal parameters are set. Then, we generalize the whole family of weighted voting rules (the family to which Borda belongs) to situations in which some rankings are more reliable than others. We show that, under mild assumptions, this generalization can solve the problem of rank aggregation over non-stationary data streams.
Type
conferenceObject