Microstructure and Phase Formation of Novel Al80Mg5Sn5Zn5X5 Light-Weight Complex Concentrated Aluminum Alloys

Loading...
Thumbnail Image
Identifiers
Publication date
2021-12-01
Advisors
Journal Title
Journal ISSN
Volume Title
Publisher
Multidisciplinary Digital Publishing Institute (MDPI)
Citations
Google Scholar
Export
Research Projects
Organizational Units
Journal Issue
Abstract
In this work, three novel complex concentrated aluminum alloys were developed. To investigate the unexplored region of the multicomponent phase diagrams, thermo-physical parameters and the CALPHAD method were used to understand the phase formation of the Al80Mg5Sn5Zn5Ni5 , Al80Mg5Sn5Zn5Mn5 , and Al80Mg5Sn5Zn5Ti5 alloys. The ingots of the alloys were manufactured by a gravity permanent mold casting process, avoiding the use of expensive, dangerous, or scarce alloying elements. The microstructural evolution as a function of the variable element (Ni, Mn, or Ti) was studied by means of different microstructural characterization techniques. The hardness and compressive strength of the as-cast alloys at room temperature were studied and correlated with the previously characterized microstructures. All the alloys showed multiphase microstructures with major α-Al dendritic matrix reinforced with secondary phases. In terms of mechanical properties, the developed alloys exhibited a high compression yield strength up to 420 MPa, high compression fracture strength up to 563 MPa, and elongation greater than 12%.
Description
Citation
Sanchez, J.M.; Pascual, A.; Vicario, I.; Albizuri, J.; Guraya, T.; Galarraga, H. Microstructure and Phase Formation of Novel Al80Mg5Sn5Zn5X5 Light-Weight Complex Concentrated Aluminum Alloys. Metals 2021, 11, 1944. https:// doi.org/10.3390/met11121944