Show simple item record

dc.contributor.authorIriarte, Imanol
dc.contributor.authorIglesias, Inaki
dc.contributor.authorLasa, Joseba
dc.contributor.authorCalvo-Soraluze, Hodei
dc.contributor.authorSierra, Basilio
dc.date.accessioned2021-05-03T10:39:41Z
dc.date.available2021-05-03T10:39:41Z
dc.date.issued2021-04
dc.identifier.citationI. Iriarte, I. Iglesias, J. Lasa, H. Calvo-Soraluze and B. Sierra, "Enhancing VTOL Multirotor Performance With a Passive Rotor Tilting Mechanism," in IEEE Access, vol. 9, pp. 64368-64380, 2021, doi: 10.1109/ACCESS.2021.3075113.en
dc.identifier.urihttp://hdl.handle.net/11556/1126
dc.description.abstractThis article discusses the benefits of introducing a simple passive mechanism to enable rotor tilting in Vertical Take-Off and Landing (VTOL) multirotor vehicles. Such a system is evaluated in relevant Urban Air Mobility (UAM) passenger transport scenarios such as hovering in wind conditions and overcoming rotor failures. While conventional parallel axis multirotors are underactuated systems, the proposed mechanism makes the vehicle fully actuated in SE(3), which implies independent cabin position and orientation control. An accurate vehicle simulator with realistic parameters is presented to compare in simulation the proposed architecture with a conventional underactuated VTOL vehicle that shares the same physical properties. In order to make fair comparisons, controllers are obtained solving an optimization problem in which the cost function of both systems is chosen to be equivalent. In particular, the control laws are Linear-Quadratic Regulators (LQR), which are derived by linearizing the systems around hover. It is shown through extensive simulation that the introduction of a passive rotor tilting mechanism based on universal joints improves performance metrics such as vehicle stability, power consumption, passenger comfort and position tracking precision in nominal flight conditions and it does not compromise vehicle safety in rotor failure situations.en
dc.language.isoengen
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleEnhancing VTOL Multirotor Performance With a Passive Rotor Tilting Mechanismen
dc.typearticleen
dc.identifier.doi10.1109/ACCESS.2021.3075113en
dc.rights.accessRightsopenAccessen
dc.subject.keywordsUrban air mobility (UAM)en
dc.subject.keywordsAirtaxien
dc.subject.keywordsFully actuated vehicleen
dc.subject.keywordsVTOLen
dc.subject.keywordsLQRen
dc.subject.keywordsOptimal controlen
dc.subject.keywordsWind gustsen
dc.subject.keywordsRotor failureen
dc.subject.keywordsVehicle performance metricsen
dc.subject.keywordsUniversal jointen
dc.identifier.essn2169-3536en
dc.journal.titleIEEE Accessen
dc.page.final64380en
dc.page.initial64368en
dc.volume.number9en


Files in this item

Thumbnail

    Show simple item record

    Attribution 4.0 InternationalExcept where otherwise noted, this item's license is described as Attribution 4.0 International