Show simple item record

dc.contributor.authorRikarte, Jokin
dc.contributor.authorMadinabeitia, Iñaki
dc.contributor.authorBaraldi, Giorgio
dc.contributor.authorFernández‐Carretero, Francisco José
dc.contributor.authorBellido‐González, Víctor
dc.contributor.authorGarcía‐Luis, Alberto
dc.contributor.authorMuñoz‐Márquez, Miguel Ángel
dc.date.accessioned2021-04-13T11:40:01Z
dc.date.available2021-04-13T11:40:01Z
dc.date.issued2021-03-24
dc.identifier.citationRikarte, Jokin, Iñaki Madinabeitia, Giorgio Baraldi, Francisco José Fernández‐Carretero, Víctor Bellido‐González, Alberto García‐Luis, and Miguel Ángel Muñoz‐Márquez. “AC Magnetron Sputtering: An Industrial Approach for High‐Voltage and High‐Performance Thin‐Film Cathodes for Li‐Ion Batteries.” Advanced Materials Interfaces (March 24, 2021): 2002125. doi:10.1002/admi.202002125.en
dc.identifier.issn2196-7350en
dc.identifier.urihttp://hdl.handle.net/11556/1109
dc.description.abstractIndustrial‐oriented mid‐frequency alternating current (MF‐AC) magnetron sputtering technique is used to fabricate LiNi0.5Mn1.5O4 high‐voltage thin‐film cathodes. Films are deposited on bare stainless‐steel substrate at room temperature and then annealed to induce crystallization in disordered spinel phase. In situ X‐ray diffraction is used to follow film structural evolution from room temperature to 900 °C. Scanning electron microscopy, X‐ray photoelectron spectroscopy, and Raman spectroscopy are used to study the evolution with temperature of film morphology, surface chemical composition, and crystal structure arrangement, respectively. Film structure evolves almost continuously in the studied temperature range. A pattern corresponding to spinel phase is observed after annealing at 600 °C, while poor crystallization is obtained for lower temperatures, and additional unwanted phase changes are observed for higher temperatures. Cyclic voltammetry, rate capability, and cycling performance of fabricated films are tested. Only the film annealed at 600 °C shows redox peaks corresponding to Ni oxidation from 2+ to 3+ and 3+ to 4+ oxidation states, confirming that this film crystallizes in disordered spinel phase. The thin‐film cathode shows good rate performance and outstanding cyclability, despite the impurities formed upon electrolyte decomposition at high voltage.en
dc.description.sponsorshipThe authors acknowledge the financial support from the European H2020 project MONBASA (Monolithic Batteries for Spaceship Applications, Grant No. 687561) and Basque Government through Elkartek 2017 program with the project Elkartek CICe2017‐L4. The authors would also like to acknowledge the assistance and support received from M. Jáuregui for the in situ XRD measurements.en
dc.language.isoengen
dc.publisherJohn Wiley and Sons Incen
dc.titleAC Magnetron Sputtering: An Industrial Approach for High‐Voltage and High‐Performance Thin‐Film Cathodes for Li‐Ion Batteriesen
dc.typearticleen
dc.identifier.doi10.1002/admi.202002125en
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/687561/EU/Monolithic Batteries for Spaceship Applications/MONBASAen
dc.rights.accessRightsembargoedAccessen
dc.subject.keywordsAC magnetron sputteringen
dc.subject.keywordsLi‐ion batteriesen
dc.subject.keywordsLiNi0.5 Mn1.5 O4en
dc.subject.keywordsRamanen
dc.subject.keywordsThin‐film cathodesen
dc.subject.keywordsX‐ray photoelectron spectroscopyen
dc.identifier.essn2196-7350en
dc.journal.titleAdvanced Materials Interfacesen
dc.page.initial2002125en


Files in this item

FilesSizeFormatView

There are no files associated with this item.

    Show simple item record