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Feature extraction-based prediction of tool wear 
of Inconel 718 in face turning

Tool wear is a recurring topic in the cutting field, so obtaining knowledge about the tool wear process and the capability 
of predicting tool wear is of special importance. Cutting processes can be optimised with predictive models that are 

able to forecast tool wear with a suitable level of accuracy. This research focuses on the application of some regression 
approaches, based on machine learning techniques, to a face-turning process for Inconel 718. To begin with, feature 
extraction of the cutting forces is considered, to generate regression models. Subsequently, the regression models are 

improved with a reduced set of features obtained by computing the feature importance. The results provide evidence that 
the gradient-boosting regressor allows an increment in the wear prediction accuracy and the random forest regressor 

has the capability of detecting relevant features that characterise the turning process. They also reveal higher accuracy in 
predicting tool wear under high-pressure cooling as opposed to conventional lubrication. 
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1.	 Introduction
The wear of machining tools in the process of turning has been 
extensively studied in recent decades as it is a relevant factor that 
affects machined surface characteristics. During the machining 
process, the surface can become destroyed and this can be decisive 
for the properties of the manufactured parts. In view of this, surface 
integrity has come to be considered the most important parameter 
for evaluating the quality of a machined part[1]. Moreover, tool wear 
is a major problem in the machining of nickel-based superalloys 
due to the high temperature and stresses generated in the tool-chip 
interface[8]. As a consequence, knowledge of the tool wear system 
and the capability to forecast tool wear are of great importance. 

Tool wear prediction has attracted the interest of scholars as it 
is considered important in industry for higher productivity and 
product quality. Not only are the quality and integrity of the machined 
parts essential, but minimising material waste is also crucial for 
sustainable manufacturing. In an investigation into analytical models 
for tool wear prediction in turning, Attanasio et al[3] proposed the 
use of their model in production management software to replace 
the tool during production. Similarly, a tool wear predictive model 
was employed in[11] to monitor tool wear in the milling process. This 
made it possible to prevent degradation in the machining process. 
Therefore, accurate predictive models of tool wear are needed for use 
in online tool condition monitoring systems[4]. 

Inconel 718 is a nickel-iron-based superalloy that is mainly 
applied in the hot section of turbine machinery and nuclear 
reactors. These materials are classified as extremely difficult to cut 
as, during the machining process, the interaction between the tool 
and the workpiece causes severe deformation in the workpiece[34]. 
Therefore, tool wear and tool life are key factors when machining 
these kinds of alloys[18]. They also present exceptional properties, 
such as high strength and corrosion resistance at high temperatures, 
as well as good creep behaviour[29]. This research focuses on 
predicting tool wear based on some regression approaches using 
features extracted from the cutting forces. Although the prediction 
of a phenomenon is a preliminary step towards optimising a 
process, this investigation also shows how different characteristics 
of the material influence the amount of wear in the different passes 

of the face turning. In addition, a novel feature extraction method 
is introduced that identifies peaks in the time series, describing the 
cutting forces, and computes descriptive statistics from these peaks. 

Different types of wear are studied in the literature, such as flank 
wear and notch wear. The flank face is the area of the tool over which 
the surface produced on the workpiece passes and this surface is 
where flank wear occurs[2]. Flank wear is the most common type of 
wear and appears because of abrasion caused by hard constituents in 
the workpiece material. It starts at the cutting tip and then widens as 
the contact area increases, hence forming the wear land. The width, 
shape and growth of the wear land depends on the tool material, 
the workpiece material and the cutting parameters[26]. Notch wear 
is a common wear phenomenon in the machining of heat resistant 
superalloys (HRSAs). It occurs due to adhesion (pressure welding of 
chips) and a deformation-hardened surface. The notch wear appears 
outside of the cutting depth[19]. Although the effect of notch wear is 
considered important, this investigation focuses on predicting the 
flank wear of the tool. The prediction of this phenomenon has some 
associated difficulties due to the large number of parameters involved 
in the process. It should be added that available experimental wear 
data are noisy and a data preprocessing step is necessary. 

In an investigation carried out with Inconel 718 to determine the 
effect of grain size and hardness on the wear of the machining tool, 
Olovsjö et al[19] arrived at the conclusion that, for materials with 
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small grains, notch wear was less prevalent than for two materials 
with large grains. The authors also concluded that hardness was 
not related to flank wear and that a modest influence could be 
associated with the grain size. However, the general result was that 
the hardness associated with a smaller grain size did not increase 
wear[18]. Nevertheless, the aforementioned investigations ignored 
any mathematical framework and focused on comparing tool wear 
measurements between different states. 

The wear of the machining tool in the process of turning has 
been the subject of a vast number of studies and investigations[7,26,19]. 
These studies have ranged from the prediction of flank wear, 
using the force ratio, to a mathematical model that established a 
relationship between tool wear land area and component forces. 
The investigations were based on mathematical modelling and 
they did not make use of artificial intelligence tools. However, 
for modelling different phenomena relevant to the machining 
process, some scholars have proposed the use of soft computing 
techniques[17,9]. Some significant characterisations of the machining 
process can be found in the literature that are based on response 
surface methodology (RSM), artificial neural networks (ANNs), 
Bayesian networks (BNs) and multiple regression (MR)[34]. 

Another common approach for predicting tool wear is the support 
vector machine (SVM) method[25,27]. Shi and Gindy[25] developed a new 
tool wear predictive model through a combination of least squares 
support vector machines (LS-SVMs) and the principal component 
analysis (PCA) technique. PCA was first proposed to extract features 
from multiple sensory signals acquired from the machining process. 
Finally, an LS-SVM-based tool wear prediction model was constructed 
by learning the correlation between extracted features and the actual 
tool wear. There are also recent contributions to the prediction of tool 
wear that use wear rate models[16,31]. In an investigation carried out to 
estimate the wear of ceramic and coated carbide tools in the turning 
of Inconel 625, Usui’s wear rate model was used. This model is based 
on the equation of adhesive wear and involves several factors, such 
as temperature, stress and sliding velocity[33]. Feed rate, cutting speed 
and depth of cut are considered as input parameters. 

More closely related to this investigation, Kilundu et al[13] explored 
the use of data mining techniques for tool condition monitoring and 
metal cutting. The tool condition was classified using five classes, 
where 22 different signals were monitored throughout the experiment. 
Four classification techniques were employed in the dataset: decision 
trees, Bayesian networks, k-nearest neighbours and neural networks. 
The validation of the approach was performed by means of a 
confusion matrix. Similarly, decision trees were used in[21] to predict 
the roughness in face milling. The goal of the aforementioned study 
was to offer engineers a decision-making system to choose the best 
cutting tool in milling. Nonetheless, this kind of approach has not yet 
been used in relation to the specific problem of predicting tool wear. 

The remainder of this paper is organised as follows: Section 2 
introduces the experimental set-up of the investigation carried out. 
Section 3 introduces the proposed approach to wear prediction, 
based on the novel features that characterise the face-turning 
process and the regression methods applied. Section 4 explains the 
validation of the proposal and analyses and discusses the results. 
Finally, Section 6 presents the concluding remarks. 

2.	 Experimental set-up
Inconel 718 is a nickel-iron-based superalloy that in this experimental 
procedure contained 53.6% nickel and 18.3% chromium. A slice cut 
from an original superalloy bar, 126 mm in diameter and 75 mm in 
width, was employed, with a 21 mm centre hole that was introduced to 

facilitate the turning tests. Heat treatment, heating and cooling, were 
applied for the specific purpose of intentionally altering the grain size 
and hardness. This process included techniques such as annealing and 
precipitation hardening and was applied to the material, Inconel 718,  
to obtain two different microstructures that differed in grain size 
(Table 1): large grain aged (LGA) and small grain aged (SGA). 

Table 1. Grain size and microhardness of Inconel 718

LGA SGA

Grain size (µm) 130 15-32

Microhardness (HV) 493 497

The face-turning operation was developed using a four-axis 
CMZ TC25BTY turning centre. Each test had the same material 
removed, with a total spiral cutting length (SCL) of 727 m, divided 
into six passes. After each of the passes, the process of turning was 
stopped and the wear of the tool (µm) was measured. The machining 
tool employed was an uncoated standard cemented carbide tool 
(Figure 1(a)). The tool wear measurement procedure was developed 
as follows: each of the pictures of the six passes were taken using 
the two cameras installed; files were created from all of the 
pictures using AutoCAD software; and picture dimensioning was 
performed where the flank wear was measured at nine points, while 
the notch wear was measured at the maximum value. From the nine 
points, the average and the maximum wear were stored as variables.  
Figure 1(b) shows an image of the tool used in the experiment 
where wear measurements were made at different points. 

The monitoring of the forces was carried out using a Kistler 9129A 
dynamometer. The total force induced by the action of the cutting 
tool on the workpiece was called F (see Figure 2). The resulting 
cutting force, F, was broken down into three components: the cutting 
force Fy was the component of the total force F in the direction of 
the cutting speed, which was tangential; Fz was in the orthogonal 
direction to the cutting speed and did not consume power (passive 
force); and the component Fx was in the radial direction[30]. 

Figure 1. The tool employed in the experimental procedure:  
(a) cemented carbide tool employed; and (b) flank wear 
measurements

Figure 2. Cutting forces Fx , Fy and Fz in the face-turning operation 
applied to Inconel 718

2	 Insight • Vol 60 • No 8 • August 2018



Insight • Vol 60 • No 8 • August 2018                                                                                                                                                            3                                                                                                                                                
                                                        	

TOOL WEAR PREDICTION

The cutting parameters of the face-turning operation used in all 
of the experiments considered were the same: the entering angle 
(91°), the rake angle (0°), the inclination angle (0°), the nose radius 
(0.4 mm), the cutting speed (30 m/min), the feed rate (0.1 mm/rev) 
and the cutting depth (2 mm). 

The turning process involves the generation of high cutting 
forces and temperatures and lubrication becomes critical in order to 
minimise the effects of these forces and temperatures on the cutting 
tool and workpiece. In this case, conventional and high-pressure 
cooling (HPC) were used. HPC has attracted interest in industry 
and it has been shown that high pressure between 60 and 200 bars is 
a feasible pressure range in terms of both cost and benefit[28]. 

The analysis was based on data collected from experiments in 
which different types of material and experimental conditions were 
used. More specifically, these were the Inconel 718 LGA and SGA 
states, the forces Fx, Fy and Fz and the maximum flank wear. 

After an initial exploration of the data, it was found that a 
preprocessing step was needed to remove noisy data that was not 
relevant to the analysis. In the experimental trials, after each of 
the passes, the process of turning was stopped. As a result, at the 
beginning and end of each pass, the force increased until it achieved 
a specific range of values and then decreased significantly. Since 
these force values were produced by the transition between passes 
and not by the characteristics of the wear process, an interval of 
values was set that defined the data that would be considered as 
relevant and those points that would be removed. Equation (1) 
describes the threshold of the values that were considered feasible: 
                                               thr = µ − kσ ........................................ (1)
Here, µ is the mean of the forces, σ is the standard deviation and k 
is a positive constant value (k = 3). Force values below the threshold 
described by Equation (1) were removed.

3.	 Description of the proposed 
approach

The presented problem of predicting the flank wear was addressed 
as a regression task, where the regression was based on a number 
of features that describe the face-turning process. The proposed 
machine learning-based approach consisted of first extracting a 
number of novel features that characterised the face-turning process 
and then applying different regressors to predict the flank wear, using 
the extracted features as input variables. Afterwards, feature selection 
was carried out by employing the feature importance to select a subset 
of the original features. The proposed machine learning approach 
was carried out in the following stages: initial feature extraction; 
application of different machine learning approaches to the regression 
problem; feature selection by computation of future importance; and 
application of the regressors to the reduced set of features. 

3.1	 Feature extraction
In machine learning, the algorithms construct associations between 
several input parameters called features and an output variable of 
interest[15]. A feature extraction procedure builds new variables 
from the original set of input variables in such a manner that they 
are relevant and non-redundant[5]. That is, given a feature space  
xi ϵ ℝN, the aim is to find a mapping from ℝN to ℝM with M < N, 
such that the transformed feature vector preserves the information 
in ℝN. Another common dimensionality reduction technique is the 
feature selection approach. Given a feature set x = {xi|i = 1, …, N}, 
the aim is to find a subset xM = {x1l, xi2, …, xiM} with M < N that 
minimises the error in regression/classification tasks. 

The input data of the models, the force signals, were time series 
in which each observation contained a series of 500,000 data points, 
listed in time order. It was essential to reduce the dimensionality of the 
data, but it was difficult to know in advance the data points that were 
relevant to predict the flank wear so as to select a subset of the features. 
Thus, a feature extraction technique was applied, transforming the 
data into a lower-dimensional space. However, feature selection was 
applied by computing the feature importance after the prediction 
models were built. The aim at this stage was to improve the quality 
of the predictive models by keeping the most informative features.  
The methodology carried out to extract the features is explained below. 

The identification and analysis of peaks in a given time series is 
relevant in many applications[23]. Peaks indicate significant events, 
such as a sudden decrease or increase and sharp rises. A data point 
in a time series is a local peak if it is a large local maximum (or 
minimum) within a window. A point is considered a maximum peak 
if it is preceded (to the left) and followed (to the right) by a lower 
value. A point is considered a minimum peak if it is preceded (to 
the left) and followed (to the right) by a higher value. In the analysis 
of the forces accomplished in this paper, a novel way of detecting 
peaks was defined. The criterion for detecting maxima and minima 
used a specified parameter α and was defined as follows: 

                                 Maxima = x x > Max ×α{ }........................... (2)

                    Minima =
x < Min × 1+α( ) ifMin > 0
x < Min ×α ifMin < 0

⎧
⎨
⎪

⎩⎪
............... (3)

where Max and Min are the maximum and minimum values of each 
of the forces for each test and α is a constant value satisfying 0 < α < 1. 
In this case, α = 0.8 was used. In Table 2, the 20 extracted features for 
Fx are shown (the same was applied to the rest of the forces). Firstly, 
seven statistical parameters were obtained from the raw signals (all 
are listed in the table with the exception of cardinality). Afterwards, 
the maximum and minimum peaks of the signals were identified 
as described above. The same statistical parameters were obtained 
from the peaks with the exception of the slope, while in this case the 
number of peaks per signal, cardinality, was taken into account. 

Table 2. Summary of the extracted features for the force Fx

Statistical 
parameters

Fx

Maximum 
peaks

Minimum 
peaks

Mean 0 7 8

Minimum 1 9 10

Maximum 2 11 12

Variance 3 13 14

Median 4 15 16

Slope 5 – –

Kurtosis 6 17 18

Cardinality – 19 20

3.2	 Applied regression methods
Various machine learning algorithms were considered in this research. 
Some of them belong to the class of ensemble learning techniques 
and are generally used for both regression and classification. In 
every case, the regressors used the features described in Table 2. The 
following regressors were selected due to their extensive applications 
in other areas: linear regression, decision trees, random forests, 
k-nearest neighbours, adaptive boosting, bootstrap aggregating and 
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gradient boosting; however, these algorithms were also applied to 
a reduced set of initial features by performing feature importance. 

Linear regression is one of the most common methods in 
statistics that linearly relates a dependent variable with one or more 
independent variables[24]. 

The k-nearest neighbours algorithm is a non-parametric method 
used for both classification and regression. It is built on the idea of 
classifying the input data based on a fixed number k of its closest 
neighbours. The k-nearest neighbours regressor estimates the target 
variable as the average of the values of its k-nearest neighbours[12]. 
The most common distance function is the Euclidean distance. 

A decision tree is based on a hierarchical decision scheme with a 
tree-like structure. It is composed of a root node (containing all data), 
a set of internal nodes (splits) and a set of terminal nodes (leaves). 
In this approach, features of the data are predictor variables and the 
class to be predicted is called the target variable. When the target 
variable is discrete, it is referred to as a decision tree classification, 
whereas decision tree regression has a continuous target variable[32]. 
The population is split into homogeneous sets or subpopulations, 
based on the most significant differentiator input variables. These 
methods present certain advantages, such as the ability to learn 
non-linear relationships between variables and identify the most 
influential variables. However, they are less accurate for regression 
problems than for classification problems. In this investigation, a 
reduction in variance was used as a splitting criterion. 

The random forest regressor is an ensemble learning approach that 
combines decision trees with the notion of an ensemble. It belongs to 
the bagging family, which combines the results of multiple classifiers 
modelled on different subsamples in order to reduce the variance of 
the predictions. The input data are entered into the system and run 
down all the trees and the outcome is the weighted average of all of the 
terminal nodes that have been reached[6]. The random forest method 
can handle large datasets and identify the most significant variables 
by computing the importance of the variable for the regression. 

The bootstrap aggregating regressor is another ensemble 
learning approach, which also belongs to the bagging family and 
was considered in this investigation. This algorithm also reduces the 
error of a learning algorithm, such as a decision tree. In bootstrap 
aggregating, the learning algorithm is applied to each bootstrap 
sample of given data[20]. The main difference from the random forest 
method is that this algorithm considers all features for splitting a 
node. In contrast, the random forest method selects only a subset of 
all the features at random and the best differentiator input (from the 
subset) is used to split each node in a tree. 

Boosting is a general method for improving the accuracy of a 
learning algorithm by converting a weak learner into a strong learner. 
The adaptive boosting regressor is a machine learning boosting 
technique that uses a weighted sum to obtain the final output, 
modifying in its favour testing points that present higher errors[22]. 
It starts by predicting the original data, giving equal weight to each 
observation. If the error of the prediction of a sample is high using 
the first learner, then a higher weight is given to the observation. The 
iterative process continues, adding learner(s) until a limit (number 
of models or accuracy) is reached. In this investigation, the base 
learning algorithm employed was the decision tree. 

Finally, the gradient-boosting regressor, an ensemble learning 
algorithm that belongs to the family of boosting, was considered. 
This also starts by giving the same weight to all observations. It uses 
a weak regressor and the population distribution is updated at each 
stage. This approach allows differentiable loss functions that map 
samples to a real number that represents the cost. The loss function is 
minimised for each new model using the gradient descent method[10]. 

3.3	 Model validation
To define the training and testing sets, the leave-one-out cross-
validation technique was used. In k-fold cross-validation, the 
dataset D is randomly split into k subsets (the folds) D1, D2, …, Dk of 
approximately equal size. The sets are used for training and testing 
k times; at each time t ϵ {1, 2, …, k} the regressor is trained on  
D\Dt and tested on Dt.  The leave-one-out corresponds to 
n-fold cross-validation when k = n, with n being the number of 
observations[14]. This decision was taken due to the small number of 
test cases for each state and lubrication, hence the training set could 
contain n − 1 samples at each iteration.

The root mean squared error (RMSE) was used to calculate the 
error, the square root of the mean square error (MSE). The MSE is a 
measure of how close a fitted value is to the data point. It measures 
the average of the squares of the errors (the differences between 
the observed and fitted values)[24]. If ŷ = ŷ1,…, ŷn( ) is a vector of n 
predictions and y = (y1, …, yn) is the vector of observed values, then 
the RMSE is calculated in the following way: 

                                 RMSE = 1
n

ŷi − yi( )2
i=1

n

∑ ................................ (4)

4.	 Results and discussion
The results of the proposed approach are presented in two parts, 
the first part involving the LGA microstructure and the second part 
involving the SGA microstructure. In both states, a comparison 
is made between the predictions obtained for normal and HPC 
lubrications. Also, there is a discussion about which regression 
method is the best for future evaluations of tool wear in the face 
turning of Inconel 718. 

4.1	 Large grain aged 
The aforementioned regression methods were applied to each 
available test of a specific state and lubrication. The data for the 
regression problems were set up by splitting the data into two 
matrices: the input matrix and the target matrix. The input matrix 
was made up of 63 features (columns) and 12 test cases (rows).  
The target matrix contained the maximum flank wear measurements. 

The RMSE measure allowed for determination of which of the 
applied methods produced the best prediction. The RMSE values 
computed from the outputs of these methods are shown in Table 3.  
The numbers in bold correspond to the lowest RMSE value obtained 
for each state and lubrication. 

One first observation from the analysis of Table 3 is that the 
errors are quite large for most states and regressors. Before reducing 
the feature subspace, the algorithm for which the lowest error was 
generally achieved was the gradient-boosting regressor. The fact 
that none of the regressors provided consistent and good results 
illustrates the difficulty of the regression task. 

In order to have a better understanding of the quality of the 
predictions, the real values versus the predicted values for the 
gradient-boosting regressor are represented in Figure 3(a), as it 
produced the lowest RMSE value for LGA, normal lubrication. 
A test is a repetition of the process of turning, which involves six 
passes for a specific lubrication and state. 

An analysis of Table 3 reveals that the RMSE values are much 
lower for HPC than those obtained for normal lubrication. The 
lowest RMSE value was obtained using the decision tree regressor. 
In Figure 3(b), the predicted versus the real values of this regressor 
are plotted. If this is compared with the Figure that corresponds 
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to normal lubrication, Figure 3(a), then the accuracy achieved for 
HPC is considerably better. The predictions for the first two passes 
for test 2 are remarkably accurate. 

Table 3. RMSE (µm) in the prediction of flank wear for each of the 
regressors and reduced feature subspace learnt from RF, Inconel 718

Regressor LGA-N LGA-H SGA-N SGA-H

Random forests 31.08 10.47 47.79 11.90

Linear regression 68.87 7.76 238.22 16.70

Ada boost 34.83 12 56.63 11.87

k neighbours 31.53 11.02 44.17 12.09

Bagging 59.80 16.37 72.38 16.58

Decision tree 43.99 6.29 55.60 17.54

Gradient boosting 29.58 8.62 36.54 9.89

Reduced feature subspace 28.01 4.56 50.14 20.10

The relatively modest results for the regressor approaches in the case 
of normal lubrication might be due to the highly complex nature of the 
prediction task, the small amount of data available or the existence of 
redundant or uninformative features. The question of whether a more 
rigorous selection of features could further improve the accuracy of 
the predictions was investigated. For this purpose, feature importance 
was computed by applying a random forest regressor. Feature selection 
was carried out using a threshold value λ. Those features that presented 
an importance value lower than λ were removed. 

Firstly, the data from the first test (including the six observations) 
were utilised to learn the parameters of the random forest regressor 
and compute feature importance, then all of the considered regressors 
were applied and validated with the second test using the reduced 
feature subspace. As leave-one-out cross-validation was used to define 

the training and testing tests, six estimates were obtained of the feature 
importance (one vector with the feature importance estimates for each 
of the six leave-one-out model learning steps), which provided their 
importance. For each feature, the predicted feature importance was 
the mean of the six estimates associated with each model learnt. 

All regression methods previously considered were applied using 
a reduced set of selected features with a threshold value of λ = 0.02. 
In Tables 4 and 5, the features selected from the feature importance 
values estimated by the random forest regressor are shown. The 
RMSE values obtained from the reduced feature subspace are lower 
than those obtained using the original feature space (Table 3). An 
analysis of Table 4 reveals that, in the case of normal lubrication, 
about half of the features correspond to the force Fx,  though the two 
most important features are related to Fy.  There are some statistical 
parameters that are repeated, such as the variance and the kurtosis. The 
distance of the peaks from the mean (variance) and the pointedness of 
the distribution seem to be good predictors of the flank wear. 

Table 4. Feature importance, LGA, normal

Feature name Force Importance

Variance of maximum peaks Fy 0.038597

Variance of minimum peaks Fy 0.026775

Minimum of maximum peaks Fx 0.025934

Maximum Fx 0.025866

Mean Fx 0.024323

Number of minimum peaks Fy 0.023912

Median Fx 0.022984

Mean of maximum peaks Fy 0.022320

Median Fy 0.022133

Median of maximum peaks Fy 0.021130

Slope Fz 0.021077

Kurtosis of minimum peaks Fx 0.020521

Kurtosis of minimum peaks Fy 0.020248

Mean of maximum peaks Fx 0.020198

Table 5. Feature importance, LGA, HPC

Feature name Force Importance

Number of minimum peaks Fx 0.033352

Number of minimum peaks Fz 0.028051

Minimum of minimum peaks Fx 0.027090

Median of minimum peaks Fz 0.026547

Kurtosis of minimum peaks Fy 0.024355

Variance of maximum peaks Fz 0.020804

Minimum of maximum peaks Fx 0.022586

Median of maximum peaks Fx 0.021630

Minimum Fx 0.020886

Maximum of minimum peaks Fz 0.020804

Median Fz 0.0206 

In the case of HPC, Table 5, the majority of the features 
correspond to statistical parameters of the distribution of the peaks 
and the cardinality of the peaks seems to play a relevant role in the 
regression. Seven of the eleven features are parameters related to 
minimum peaks. The kurtosis computed for the minimum peaks of 

Figure 3. Real and predicted values using the gradient-boosting 
regressor and the decision tree regressor for Inconel 718, LGA:  
(a) normal lubrication; and (b) high-pressure lubrication
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Fy and the minimum of the maximum peaks of Fx are the features 
repeated in both reduced feature subspaces. 

4.2	 Small grain aged
In the case of the SGA state, two tests were available for normal 
lubrication (12 samples) and three tests for HPC (18 samples), as 
each test was composed at six passes. Figure 4(a) shows that for 
the first test the predicted values are higher than the real values in 
general, except for the first and last passes. For the case of SGA and 
normal lubrication, the flank wear becomes critical earlier than in 
the LGA state. This phenomenon can be observed in Figure 5. 

Analysis of Table 3 shows that in the case of SGA and HPC 
lubrication, the RMSE obtained from the method is lower than that 
obtained for data corresponding to normal lubrication. Figure 4(b) 
shows real and predicted values for the gradient-boosting regressor 
with the original feature space and HPC lubrication. It can be 
observed that the prediction for the sixth pass is higher than the 
real value for tests 2 and 3. There are some remarkable cases, such 
as pass 4 from test 2, and passes 1, 3 and 5 from test 3, in which the 
prediction achieves the exact value. 

As before, the feature importance was computed using the 
random forest regressor for the first test and the regressors were 
trained and tested with the reduced feature subspace for the second. 

Tables 6 and 7 show the most important features produced by the 
method, using λ = 0.02 as a threshold value. 

In the case of normal lubrication, the three most important 
features correspond to the cardinality of the minimum peaks. 
Similar to the LGA state, there are more features related to the 
minimum peaks of the cutting forces than to the maximum peaks. 
In the case of HPC, most of the selected features correspond to the 
force Fy . In this case, there are more features related to the maximum 
peaks than to the minimum peaks. The performance in terms of 
RMSE is no better when using the reduced feature subspace. 

Table 6. Feature importance, SGA, normal

Feature name Force Importance

Number of minimum peaks Fz 0.039885

Number of minimum peaks Fx 0.030493

Number of minimum peaks Fy 0.027503

Mean Fx 0.026255

Median Fx 0.025868

Maximum of minimum peaks Fx 0.023882

Number of minimum peaks Fx 0.023688

Slope Fy 0.023180

Variance of minimum peaks Fz 0.022635

Kurtosis of minimum peaks Fx 0.022365

Variance Fy 0.022349

Minimum of minimum peaks Fy 0.021864

Minimum of maximum peaks Fx 0.020581

Minimum of minimum peaks Fx 0.020427

Variance of maximum peaks Fx 0.020079 

Table 7. Feature importance, LGA, HPC

Feature name Force Importance

Maximum of minimum peaks Fy 0.041207

Number of maximum peaks Fy 0.037089

Kurtosis Fy 0.035564

Variance of maximum peaks Fy 0.030151

Number of minimum peaks Fy 0.029909

Number of maximum peaks Fz 0.027606

Median of maximum peaks Fz 0.026286

Number of maximum peaks Fx 0.026138

Variance Fx 0.025207

There are several factors that influence tool wear, including 
cutting tool geometry, cutting conditions, cutting tool material 
and the workpiece. As the workpiece presents different states in the 
experiments, differences are expected in the tool wear among both 
states and lubrications. Regarding the maximum flank wear, the 
values were considerably higher in both states when using normal 
lubrication than when using HPC. In the case of HPC, the maximum 
values were reached in the sixth pass and the pattern was similar 
for both tests, though for normal lubrication the flank wear for the 
sixth pass was higher in the second test. It can be concluded that the 
tests involving HPC lubrication were more similar to one another 
than those involving normal lubrication. As a result, the quality of 
the predictions was better in terms of RMSE. There are two features 

Figure 4. Real and predicted values using the gradient-boosting 
regressor for Inconel 718, SGA: (a) normal lubrication; and  
(b) high-pressure lubrication

Figure 5. Turning tool used in the experiments: (a) large grain 
aged; and (b) small grain aged
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that appeared in both reduced subspaces: the minimum of the 
maximum peaks of Fx and the kurtosis of the minimum peaks of Fy. 

Subsequently, predictions for the SGA state for both normal 
and HPC lubrication were carried out. As for the LGA state when 
HPC lubrication was used, the prediction of the flank wear was 
better in terms of RMSE. In the case of the SGA state, both reduced 
subspaces (normal and HPC) had two features in common: the 
number of minimum peaks of Fy and the number of maximum 
peaks of Fx.  Generally, the gradient-boosting regressor excelled in 
quality compared with the other applied regression methods and 
the reduced feature subspace only produced a gain in the LGA state. 
Accordingly, in future evaluations the gradient-boosting regressor 
should be employed.

5.	 Conclusions
This investigation has presented a predictive tool wear model, which, 
among other things, has served to examine the best (in terms of 
RMSE) regression method to use in future evaluations. In addition, 
a novel approach has been proposed that includes feature extraction 
and machine learning-based feature selection steps and a variety of 
machine learning techniques to predict flank wear. To begin with, a 
novel feature extraction of the cutting force signals was performed. 
This focused on peak detection, as peaks are descriptors of significant 
events and changes in time series. The improvement achieved in tool 
wear accuracy, for the LGA state, employing the feature importance 
tool of the random forest regressor, indicates that the features suitably 
characterise the turning process. Those features that presented higher 
importance or were repeated in different models should be studied 
in more detail. The majority of the selected important features 
corresponded to Fx,  though there were also several features related 
to Fy.  Only seven features related to Fz appeared. Therefore, there is 
no doubt of the influence that the radial force Fx has on the tool wear. 

The regression methods were then applied to the data. It should 
be noted that it was difficult to develop a predictive model for wear 
prediction, including the effect of cutting forces, due to the non-
linear behaviour of the wear mechanism, which was influenced 
by the large number of factors that have an impact on wear. Other 
elements of added difficulty were the issues concerning the small 
amount of data available and the noise in the force signals. In spite of 
the associated difficulty of the process, which affected the prediction 
task, some significant differences were found among the machine 
learning approaches used. The ensemble learning techniques, 
bagging and boosting combine base learners, such as decision trees, 
or convert weak learners into strong learners. Thus, the ensemble 
learning methods performed better in terms of RMSE than linear 
or decision tree regressors. In almost every case, the best method 
was the gradient-boosting regressor and it was concluded that this is 
the best method in terms of RMSE to apply in future investigations.

Finally, this investigation contributes to the knowledge of how the 
characteristics of the material influence the amount of wear. Regarding 
this, remarkably better results were obtained for HPC lubrication 
than for normal lubrication in both of the states considered. This 
phenomenon can be attributed to the fact that for HPC lubrication 
the different tests were very similar to one another, exhibiting the 
same pattern as well as reaching the same maximum value in the 
sixth pass. However, more experiments should be conducted in order 
to assure repeatability for HPC lubrication. This research work aims 
to be a first step towards the optimisation of the process. The results 
obtained can be used in a decision-making system that lengthens the 
tool life and benefits both productivity and cost. 

This study has revealed the necessity of expanding research on 

HPC lubrication, as the best results were achieved for this method. 
This would be a necessary step in the creation of more efficient 
machining processes. The research presented can be improved with 
the inclusion of other input variables, such as temperature, and 
characterising the different states with their respective grain sizes and 
microhardnesses. Also, it would be interesting to try other models, 
such as neural networks or regression methods that are based on 
Gaussian kernels, to investigate their performance for this problem. 
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