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Abstract 

In the steel industry, there are some parameters that are difficult to measure online due to technical difficulties. In these scenarios, soft-sensors, 
which are online tools that aim forecasting of certain variables, play an indispensable role for quality control. In this investigation, different soft 
sensors are developed to address the problem of predicting the slag quantity and composition in an electric arc furnace process. The results 
provide evidence that the models perform better for simulated data than for real data. They also reveal higher accuracy in predicting the 
composition of the slag than the measured quantity of the slag.
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1. Introduction

In the industrial sector and in traditional industrial processes,
such as the steel industry, more and more elements of the chain 
are digitized. The availability of data is increasing, but this data 
is difficult to structure, process and in some cases to collect, and 
it is also difficult to extract valuable information from it. In this 
context, efficiency in industrial processes is of great 
importance, especially when it is intended to reduce the 
ecological footprint, while maintaining the production 
availability. 

The optimization of steel production tends to apply new 
technologies, combining automation, connectivity, digitization 
and artificial intelligence, which will make these processes 
more efficient. In addition, the intelligent combination of 
different tools, such as physical modeling and data-driven 
modeling, will play an important role in the digitization of the 
steel sector. In [2], the importance of digitization in this sector 

is exposed where it is argued that one of the most important 
lines is adaptive online control. 

A soft-sensor (SS), is an online control tool which aims the 
online forecasting of certain variables that play an 
indispensable role in the quality control of an industrial process. 
In some industrial processes, there are variables which are 
difficult to measure online due to technical or economic 
limitations [18, 7]. A solution for this type of problem comes 
on the hand of the SS paradigm, which provides a reliable and 
stable estimation. Applications of this technology can be found 
in a multitude fields of industrial processes. The most common 
ones are: online forecasting, process monitoring and failure 
detection, as well as quality control. 

The steel production based on electric arc furnace (EAF), 
consumes a large amount of energy, hence making the more 
efficient becomes a priority in any steel company. However, 
given the complicated characteristics of the process, online 
measurements with physical equipment are very complicated, 
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and therefore SSs are appropriate in these harsh environments. 
For this reason, there are studies that try to obtain measurements 
online through inference, based on other variables that are 
easier to monitor. Electric energy consumption is one of the 
most important factor [10, 14], as well as the slag foaming [19, 
13], which is a key factor in terms of quality and productivity 
in a EAF steelmaking process. The slag is a by-product of 
steelmaking process which is produced during the separation of 
the molten steel from impurities in steel making furnaces. 
  The objective of this work is to control by means of an SS the 
quantity and composition of the generated slag. The amount of 
slag is also a very important factor, which is an indicator of the 
efficiency of the process. Therefore, an estimation prior to the 
melting process is considered of great importance [8, 15] from 
an economic point of view. The online estimation of the 
composition of the slag allows to have a complete analysis of 
the process, as well as to increase the measurement frequency. 
This is especially relevant to provide a second life to the waste 
of a process, the composition is a characteristic to take into 
account. 
  The actual weighting of the slag is a complicated task. Due to 
the dynamic nature of the process the quantity removed from 
the furnace is not reliable enough. It is only reliable when all 
the steel is removed from the furnace, and this occurs once a 
week in this specific usecase. Thus, two strategies have been 
used when estimating the produced slag. First, a study of a 
model to estimate the real slag generated in a week has been 
made and second, a value calculated from the real composition 
has been taken as the variable to be estimated for the model. 
Finally, two elements of the composition of the slag are also 
predicted. 
  The remainder of the paper is organized as follows. Section 2 
gives some background of the EAF process and special 
considerations for this work. Section 3 describes the proposed 
approach to build the soft-sensors of the slag. Section 4 is 
devoted to the discussion. Finally, Section 5 draws some 
conclusions. 
 
2. The electric arc furnace process 
 
  The steel production can be divided in two different phases: 
primary and secondary metallurgy. During the primary 
metallurgy, the raw material (iron ore or scrap) is converted into 
steel (that is, an iron alloy with a C content lower than 2%). 
During the secondary metallurgy the alloy is refined and its 
chemical composition is adjusted [21]. 
  The primary metallurgy is achieved across two main routes: 
Blast Furnace-Basic Oxygen Furnace (BF-BOF) route and EAF 
route. For the BF-BOF route the raw materials are 
predominantly iron ore, coal, and recycled steel (10-30%), 
while the EAF route produces steel using mainly recycled steel 
(about 100%) and electricity. Although nowadays only about 
the 28% of steel is produced by EAF [1], this route is a very 
relevant actor thanks to its major flexibility and sustainability 
[16]: steel can be produced from 100% of scrap instead of using 
iron ore contributing to the Circular Economy, and it uses 
electricity instead of coal contributing to the industry 
decarbonization [12]. 
  An EAF usually consists of a bottom vessel lined with 
refractory and a cover with openings for the electrodes. The 
graphite electrodes (three in this case) are connected to alternate 
current and create the electric arc between them and the scrap. 

In order to do that, they are connected to a transformer which 
provides suitable current and voltage conditions to turn in the 
electric arc. The furnace has also different openings to extract 
the liquid steel and the slag, to add lime and to insert lances for 
the injection of oxygen, carbon or gas [6]. The operation 
typically takes place in several stages: First, part of the scrap is 
introduced in the furnace by means of one or several enormous 
baskets (in the studied cases, one basket loading between 50 
and 90 Tn of scrap is used). The furnace is closed, and the scrap 
is partially melted by the electrodes to reduce its volume and 
release space in the furnace. Next the furnace is opened, the rest 
of scrap is introduced again by the basket in the furnace, which 
is closed again, and the scrap is completely melted. This 
process, ideally lasted around one hour, however sometimes 
there are slight variations in the process duration. Part of the 
additives, such as part of the lime, are added in each basket and 
the rest are added in this last stage together with the injection of 
oxygen, carbon and/or gas [20]. The scrap selection is done 
depending on the final composition desired for the produced 
steel, in order to control the residual elements (Cu, Sn, Ni, Cr,). 
In this investigation, the study of the steel production is limited 
to special steels as the employed data belongs to a special steel 
production. However, it would be possible to generalize to 
other steel production processes. 

 Table 1.Predictive variables summarized in groups of variables indicating the 
number of variables per group. 

Group of variable Number of 
variables 

Injection modules 12 
Additions 5 
Scrap (basket 1) 
Scrap (basket 2) 
Others 

12 
11 
4 

 
During the melting process, the main chemical phenomenon 
that takes place is the Fe oxidation/reduction. It is achieved 
thanks to the lime (CaO) addition and the injection of oxygen. 
The iron oxidation Fe+O2→FeO is followed by a reduction 
process FeO+C→CO. In addition, the oxygen oxidizes the 
excess of carbon (C+O→CO), phosphorous 
(2P+5/2O2→P2O5), silicon (Si+O2→ SiO2), and manganese 
(Mn+O2→ MnO). These oxidation reactions are exothermic, 
so they also have an energetic contribution. This process 
generates a layer of oxides, which forms part of the slag, 
avoiding energy losses and protecting the melt steel. The 
CO bubbles floating up through the melt result in refining 
of the steel from non-metallic inclusions and hydrogen 
removal. Moreover, as the CO tend to exit to the 
atmosphere across the slag it produces a foamy effect. These 
CO partially burns in the atmosphere CO+O2 →CO2 , and 
both, CO and CO2 are removed by the exhausting system. The 
slag layer is later removed, and the steel is poured to a smaller 
furnace where the secondary metallurgy takes place [4]. 
  The generated slag quantity per casting is one of the most 
critical process parameter, and should be under control. The 
slag is extracted from the furnace using a slag pot to be 
measured. Every casting, the generated slag is removed from 
the furnace using the slag pot, nevertheless there is always 
some quantity that remains in the furnace. 
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  Table 1 shows the predictive variables considered in this 
investigation, summarized in groups indicating the number of 
variables in each of the groups. The variables of group Others 
are the number of uses of the furnace bottom, the furnace shell 
id, the presence/absence of the direct purging plug (DPP) and 
the day of the week. The furnace’s bottom is repaired every two 
weeks and once a month, the furnace bottom is changed. Every 
time that the furnace bottom is changed, the use of the furnace 
bottom is initialized to zero. Regarding to the furnace shells, 
two different furnace shells are used to perform the EAF 
process. Sometimes, DPPs are used to insert argon to facilitate 
chemical reactions. The EAF process is organized in cycles. 
One cycle corresponds to a week where at the end of a week 
the furnace is cleared out. There is a time gap between the last 
casting of a cycle and the first casting of the next cycle. 

 Table 2. Minimum and maximum permitted ranges used to filter the castings. 
Variable Minimum Maximum 
Scrap basket 1 + Scrap basket 2 135000 150000 
Temperature 1600 1700 
Uses of the furnace bottom 
Electrical consumption 

0 
50000 

600 
80000 

 
3. Predictive model generation 
 
The presented problem of predicting the slag quantity was 
addressed as a regression task, where the regression was based 
on a number of predictive variables that describe the EAF 
process. The proposed Machine Learning-based approach 
consisted of first applying data filtering techniques and 
selecting the predictive variables. The slag prediction model 
was addressed using three different focuses: 1) a weekly model 
of the generated slag; 2) a calculated slag model per casting; 3) 
different slag composition models. 
 
3.1. Data pre-processing 
 
Machine Learning algorithms consist of constructing 
associations between several predictive variables and a target 
variable. However, before starting building the models, some 
data pre-processing is commonly needed [11]. 
  In this case, the data pre-processing was focused on filtering 
some castings that were not suitable for the analysis. Note, that 
one data sample corresponds to one casting. On the one hand, 
this step of filtering the castings was carried out with the help 
of an expert person with experience and knowledge in the EAF 
process. Table 2 shows the feasible ranges of values that are 
permitted to take the variables. The values that are out of the 
defined ranges are considered anomalies of the process. Note 
that here we include the variables of electrical consumption and 
temperature that were not mentioned in Section 2 as predictive 
variables. These variables give us valuable information, 
although they cannot be used as predictive variables, as they 
are outcome of the process, hence they are unknown before 
performing a casting. 
  On the other hand, the castings were filtered also using some 
statistical analysis. The feasible ranges for the variables 
belonging to the group injection modules and additions were 
calculated as shown in Equation (1) (with the exception of the 
minimum for the additions, that is 0). 

 

 
  where μ is the mean value of the variable, σ the standard 
deviation and d = 2. 
  For illustrative purposes, Fig. 1 shows, the permitted range for 
the variable primary oxygen consumption oxipri4. The castings 
that are out of the band represented by a green line are removed 
from the analysis. 
 

 
Fig. 1: Considered range for the variable primary oxygen consumption oxipri4. 
The permitted minimum and maximum are computed using statistical analysis. 
 
3.2. Model Validation 
 
  To define training and testing sets different techniques are 
used depending on the scenario. In k-fold cross-validation, the 
dataset D is randomly split into k subsets (the folds) D1, D2, ..., 
Dk of approximately equal size. The sets are used for training 
and testing k times; at each time t ∈ {1, 2, ..., k} the 
regressor is trained on D\Dt and tested on Dt [9]. Leave-one-out 
cross-validation is a specific case of k-fold cross-validation 
when k = N, where N is the number of observations in the 
dataset.  
  The mean absolute error (MAE) is used to calculate the errors. 
It measures the average of the absolute errors [17]. If 
ŷ=(ŷ1,...,ŷN) is a vector of N predictions and y=(y1,...,yN) is the 
vector of observed values, then MAE is calculated as shown 
in Equation (2). 
 

 
For better interpretability of the MAE, the normalized MAE 

(NMAE) is also used. The NMAE is calculated as shown in 
Equation (3) where ymax and ymin are the maximum and 
minimum values of y, respectively. 
 

 
  Moreover, the coefficient of determination, R2 , is used which 
is the proportion of the variance in the target variable that is 
predictable from the input variables. 
 
3.3 Model generation 
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Various Machine Learning algorithms were considered in this 
research. The methods belong to the class of Ensemble 
Learning techniques. Random Forest regressor [3] is an 
Ensemble Learning method that combines Decision Trees with 
the notion of an ensemble. It belongs to the bagging family, 
which combines the results of multiple regressors modelled on 
different subsamples in order to reduce the variance of the 
predictions. Gradient-boosting regressor [5], is an Ensemble 
Learning algorithm and belongs to the family of boosting. It 
starts by giving the same weight to all observations and uses a 
weak regressor. The population distribution is updated at each 
stage. 

 
 

Fig. 2. Bar plot indicating the number of castings that belong to each week. 
 
3.3.1. Weekly model of the generated slag 
 
  In this section, an SS for the weekly slag quantity is generated. 
In this scenario, the weekly measurements of the slag are close 
to the generated real slag as at the end of the week the EAF is 
clear out. The data contains the castings performed in 26 weeks 
and 42 predictive variables are considered in the analysis. 
 

● Predictive variables: Weekly scrap quantity belonging 
to basket 1 and 2, weekly quantity of additions, 
weekly quantity of injection modules, furnace shell id, 
furnace bottom uses and number of castings per week. 

● Target variables: Slag quantity per week. 
 
  In the case of most of the variables, the casting values are 
added per week. All the castings belonging to the same week 
are performed in the same furnace shell, thus variable furnace 
shell id is the same for all castings. In the case of the variable 
furnace bottom uses, the maximum value is considered. The 
performed castings per week are shown in Fig. 2, where X axis 
indicates the week number (from 1 to 26) and Y axis the 
performed number of castings. As it can be observed there is a 
slight variation in the number of castings. The average number 
of castings per week is μ = 128.46 with a standard deviation of 
σ = 14.44. 
  The Random Forest method was used to model the data with 
leave-one-out cross-validation, and the obtained error was of 
MAE = 138250. Note that this measure is the average of 
absolute errors per week. If we divide it by the average number 
of castings per week, the MAE is 1076.21. In this case, the R2 

is not computed as it is not possible to calculate this metric at 
each iteration (we only have one casting at each iteration). 

  A more rigorous selection of predictive variables was 
employed in order to improve the accuracy of predictions. For 
this purpose, feature importance was computed using the 
Random Forest regressor. The selection of variables was 
carried out using a threshold value λ (variables that present a 
value lower that λ were removed). 
  The regression method was applied using a reduced set of 
selected variables with a threshold value of λ = 0.001 resulting 
in 23 variables instead of 42. With the reduced set of variables 
the obtained error was smaller (MAE = 118803, resulting on 
MAE = 924.82 per casting). With this reduced set the NMAE 
= 0.11. Fig. 3 shows the scatter plot of real and predicted values 
of the slag quantity per week. The values are standardized to a 
[0, 1] range. 
 
3.3.2. Simulated slag model per casting 
 
  In this section, an SS for the simulated slag model per casting 
is generated. The simulated slag is used instead of the measured 
one, as it is not assured that all the slag is removed when 
finishing the process. The simulated slag is calculated using a 
mass-balance modeling focused in the lime (Equation (4)). 

 

  where cc, cd and caa are different kinds of limes injected in 
the process. CaO%cc refers to the CaO% quantity in cc and Rcc 
is the efficiency of cc. This is extrapolable to the variables cd 
and caa. 

 

Fig. 3. Scatter plot of the real and predicted values of the slag quantity per week 
using a reduced set of predictive variables. 

  The following variables are considered in the model.  

● Predictive variables: Variables related to injection 
modules, additions, scrap from basket 1 and 2 and 
others. 

● Target variables: Simulated slag quantity per casting. 

  The model has been trained with 387 castings and 45 
variables. The reduced set of castings is due to the fact that not 
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in all castings an analysis of the composition of the slag is 
performed. For that reason, there is no information of the 
CaO% for all the castings and it is not possible to know the slag 
sim for those castings. The Gradient Boosting regressor was 
used to model the data using 5-fold cross-validation. The 
obtained error was of MAE = 1302.67, R2 = 0.7 and 
NMAE=0.05. Fig. 4 shows the scatter plot of real and predicted 
values of the simulated slag per casting. The values are 
standardized to a [0, 1] range. 

3.3.3. Models of different compositions of the slag 

  The composition of the slag is measured for some castings and 
predictive models of the lime percentage (CaO%) and silicon 
oxide percentage (SiO 2 %) are carried out. 
  As occurred with the simulated casting model, these two 
models were trained with 387 castings and 45 variables. The 
reduced set of castings is because of the composition of the slag 
is only measured for a reduced set of castings. The predictive 
variables involved in the analysis are the ones in Section 3.3.2. 

● Target variables: CaO% and SiO 2 %. 

  The Random Forest regressor was used to model the data 
using 5-fold cross-validation. The obtained errors for the 
CaO% were MAE = 2.22, R2 = 0.35 and NMAE = 0.07; 
whereas for the SiO2 % model, MAE = 1.31, R2 = 0.41 and 
NMAE = 0.1. Fig. 5 and Fig. 6 show the real and predicted 
values obtained from the generated two models of the slag 
composition.  
  The values are standardized to a [0, 1] range. The R2 can be 
interpreted as the proportion of the variance in the target 
variable that is predictable from the input variables. In both 
cases the obtained R2 s are quite low. 
 

 
Fig. 4: Scatter plot of the real and predicted values of the simulated slag 
quantity per casting. 
 
4. Discussion 
 
The problem of predicting the slag quantity has been a 
challenging task due to the non-reliability of the data and the 
complexity of the EAF process itself. Thus, three different 
procedures were explored to address the problem. 
  Table 3 shows the NMAE of the four models considered in 
this investigation. The lowest value was achieved for the 

simulated slag model continued by the CaO%, whereas the 
worst ones were weekly and SiO 2 % models. 
  The relatively modest results obtained for the weekly model 
are due to the low quantity of weeks that are available. As it 
can be observed in Fig. 3, there are some predicted values that 
are far away from the regression line. A similar phenomenon 
occurs to the predicted values of the SiO 2 % model, shown in 
Fig. 6. 
  Usually, the data-driven models with simulated data perform 
better than the models fitted with real data. This explains that 
the lowest error was achieved for the simulated slag model. 
  Although the models generated for predicting CaO% and 
SiO2% are not direct approaches to deal with the slag prediction 
problem, they gave information of interest and the predicted 
CaO% can be used to calculated the generated slag with 
Equation (4). The relatively modest results obtained in the 
predictive models are because of the uncertainties related to the 
quality of the data and complexity of the EAF process itself. 

Table 3. Comparison of the generated models where achieved NMAE values 
are shown. 

Models NMAE 
Weekly model 0.1 
Simulated slag 0.05 
CaO% 
SiO2% 

0.07 
0.1 

 

 
Fig. 5. Scatter plot between real and predicted values per casting for CaO % 
model.  
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Fig. 6. Scatter plot between real and predicted values per casting for SiO2 %
model.  

5. Conclusions and future work

This investigation introduces different approaches to deal 
with the slag prediction problem. This problem has been 
challenging because of non-reliability of the data and the 
complexity of the EAF process. 

The best results were obtained for the slag simulated model, 
achieving highest NMAE. However, this model is built with 
simulated data, in contrast to the rest of the models. The only 
way to use the measured slag was by considering weekly, as it 
is not assured that all the generated slag is extracted at the end 
of a casting. It would be interesting to address the slag 
prediction model per casting, with measured slag quantity, 
assuring that the measured and generated quantities agree. 

This study reveals the need to go deeper into the slag 
prediction problem with more reliable data. The analysis might 
be improved by adding the following information that currently 
is not available. The characterization of the scrap (e.g. 
composition) used in the castings, knowing the specific 
supplier of the additions of lime and coal per casting, and which 
of the injection points for coal is used for a casting. 

This work also can be extended with an optimization scenario 
where the generated slag can be minimized and by predicting 
the foaminess of the slag. The foaminess of the slag is an 
interesting parameter to consider, as indicates how much slag 
can be extracted from the furnace (higher the foaminess easier 
to extract slag). 
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