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Abstract 

This paper introduces a linear programming (LP)-based optimisation method of charging electric 
vehicles (EVs) in a decentralised fashion. It exploits the available photovoltaic (PV) power to charge EV 
batteries while maintaining the low-voltage (LV) network within its operational limits. A new energy-
bound model is implemented in order to meet the connected EVs energy requirements. This model 
highlights two main aspects: first, the proposed formulation seeks to compute both the upper and lower 
energy boundaries from the arrival energy and no from zero. Second, the charging power is dynamically 
adjusted by combining a fixed and variable charging rate to assure the technical limits of the network. 
This means maximising power delivered to all EVs for a given period by optimising the charging rate of 
each EV connected. Besides, a network sensitivity analysis technique is developed to manage voltage 
and loading constraints. The accuracy of the proposed linear approximation was tested simulating two 
cases (moderate and high penetration level of PVs and EVs) on a real LV feeder. Results over a set of 
simulations for winter and summer seasons demonstrate that this method can be effectively implemented 
as a charging strategy and for energy planning studies. 
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1. Introduction 

Modern low voltage networks face a high presence of electric vehicles and renewable energy, motivated 
by the increasing concern about air quality and oil dependency. This trend is expected to continue in the 
coming years. Despite their clear advantages from the environmental point of view, these technologies 
present new challenges for their massive integration in the grid that require to be addressed with new 
operation methods. In particular, the charging of EVs needs to be optimised. 

Drawbacks of the uncontrolled EVs charging process in LV networks have been widely studied by 
several researchers in [1–4]. All these studies conclude that this passive strategy causes significant 
voltage drops and overloads on the LV feeders. Moreover, with an increasing level of PV penetration in 
the distribution networks, reverse power flow and voltage rise would also be expected [5]. Therefore, 
these effects can lead to an expensive investment and time-consuming tasks to reinforce network 
capacity. In order to deal with these problems, there would be a need to stimulate the self-consumption 
of PV power for charging the EV battery when possible. This means taking advantage of the correlation 

between both distributed energy resources, which mainly depends on the driver's mobility uses, the PV 



power forecast and the implementation of an effective smart control strategy. For instance, a user with 
several daily trips near to its household benefits from almost 70% of PV power generation during the 
charging process, whereas a user with a long-range trip would take less advantage of that power 
availability [6]. Thereby, this highlights the potential to further redistribute the EV charging process to 
better match with PV power generation. Besides, this aspect is also influenced by the weather 
conditions, i.e., the EV owners will tend to charge their batteries early on a sunny day, reducing the 

electric power demand at peak hours. However, it would be required devise new controlled charging 
schemes in a centralised, distributed or decentralised mode, as classified in [7]. Since centralised 
methods require full network visibility and handling a significant amount of information to be 
transmitted and processed, the decentralised and distributed schemes are more attractive because they 
can be gradually implemented and use local communications [2,8]. 

Hence, in [1,9–12], different researchers have studied the use of network sensitivity coefficients to 
approximate the voltage, loading level or both in unbalanced LV networks when adding new loads such 
as EVs. These studies have used such coefficients within different optimisation techniques (e.g., linear 
[1,9,11], nonlinear [10] and heuristic [12]) to coordinate in a centralised manner the charging process of 
EVs. Nonetheless, these studies do not consider the addition of photovoltaic systems to assess in 
conjunction with the EVs their impact on the LV network. In [13], the authors employed mixed-integer 
linear programming (MILP) to minimise the energy storage systems (ESS) charging power in EV 
stations for providing voltage support in unbalanced feeders with PVs. This study only considered the 
voltage level as the network constraint, which was assessed just using a set of sensitivity coefficients 

that combine load and generation. In [9], the load level increase for both the network's transformer and 
lines due to power demanded by the EVs is evaluated based on their sensitivity coefficients expressed in 
kVA/kW. This criterion is also used in [11] for assessing the loading level on the distribution transformer. 
Likewise, in [1], the load variation on the main cable is evaluated by these sensitivities expressed in 
A/kW. However, apparent power and current are complex values whose magnitudes are always positive. 
Therefore, the way of expressing these sensitivities is valid only if load addition is considered (i.e., the 
EVs). Nonetheless, this is no longer valid if the power flow changes its direction because of excess 
intermittent renewable electricity. This means that the reverse power flow in the network cannot be 
computed through those magnitudes within the linearization. Hence, by considering PV generation, the 
loading sensitivity coefficients for lines and distribution transformers must be calculated in terms of the 
active power (kW/kW) to evidence the power flow direction. 

On the other hand, [14] proposed an aggregate power- and energy-boundary model for EVs with 
vehicle-to-grid (V2G) capacity to provide power reserve services to the grid. The model is included as a 
constraint in a day-ahead scheduling problem formulated as a mixed-integer nonlinear programming 
(MINLP) model. In [15], a similar energy-bound model for V2G, along with a charging power allocation 
algorithm to offer power reserve services are introduced. Here, the upper and lower energy boundaries 
of EVs are computed in real-time as a function of the battery voltage, current, charging/discharging rate, 
and the state-of-charge (SOC). As this model requires extensive information about the EV, for a large 
number of EVs, it will be computationally more intense.  

Additionally, other energy models are used only for charging EVs as part of different charging strategies 
based on quadratic programming (QP) [16] and LP [16–18] techniques. For example, in [16], the upper 



and lower energy limits are obtained by considering the electrical power demand during driving with the 
maximum and minimum energy capacity of the battery, respectively. These last two constants are also 
used in [14]. Moreover, both authors use of a nonlinear battery model to compute the initial energy of 
EVs using an extensive set of parameters. The work described in [17] and [18] use similar equations to 
compute the energy boundaries of the EVs. Both define the arrival energy state as zero, which then 
increases up to the required energy level of each EV. Besides, these studies, excluding [16], do not 

consider any network topology or related technical constraints.  

Unlike the literature mentioned above, the proposed energy boundary model here highlights two main 
aspects: first, the proposed formulation seeks to compute both the upper and lower energy boundaries 

from the arrival energy and no from zero (based on the required energy level). Second, the charging 
power is dynamically adjusted by combining a fixed and variable charging rate to assure the technical 
limits of the network. Furthermore, this paper proposes a linearization of network constraints throughout 
a series of sensitivity coefficients by accounting for the simultaneous effect of PV power and EV 
charging on the LV networks. Hence, this paper focuses on proposing a decentralised charging control 
strategy, as classified in [7], based on the energy and power boundaries of EVs and the use of the 
available PV power generation. A new formulation of the energy-bound model is introduced considering 
the uncertainty behaviour of EVs. This decentralised control is envisaged for a small network zone 
where an aggregator or a distribution system operator (DSO) can manage and monitor, through a small 
central controller, all the available resources, i.e., EVs and PVs. The proposed methodology is 
formulated as a linear programming model due to its capability to find optimal global solutions in an 

efficient way. Unbalanced three-phase load flows are used to generate the network sensitivity 
coefficients, which are subsequently used in the definition of network constraints (i.e., voltages and 
loading level). The final objective is to find in a decentralised fashion the best charging pattern that 
meets the energy requirements of every EV connected to the LV network, taking advantage of the PV 
power while maintaining the network within its operational limits. 

This article is organised as follows: Section 2 explains the uncertainty behaviour for EVs and PVs, the 
proposed energy-boundary model and PV system model approximation. Section 3 describes the network 
sensitivities and the proposed objective function with its constraints. In Section 4, the case studies are 
introduced, and Section 5 discusses the numerical results. Finally, conclusions are presented in Section 
6. 

2. Distributed Energy Resources Modelling  

2.1. Uncertainty characterisation of EVs 

It is assumed that the arrival and commuting processes of the EVs are all uncertain. However, these 
variables follow known probability distributions and their parameters can be predicted based on 

historical records. In this regard, the daily travelled distance dj is evaluated from real data [19] by a 
lognormal distribution function with parameters μtra and σtra. Likewise, the truncated normal distribution 

φ is adopted from [20] to represent the arrival time arr

jt of each EV as follows:  

),,,|( maxmin ttNt arrarrEV

arr

j σµϕ=  (1) 



where NEV is the number of EVs parked at home, mint and maxt denote the arrival time range of EVs with 

mean μarr and standard deviation σarr. Parameters and detailed formulation for both probability density 
functions are shown below in Table 1 and Appendix A, respectively. 

Table 1 
Parameters of the probability density functions 

Variable Input PDF Parameters 
dj NEV Lognormal μtra = 2.89257 σtra= 0.91779   
tarr NEV Truncated Normal μarr = 16:00  σarr= 3-h tmin = 11:00  tmax = 23:00 

 

2.2 EVs model 

The batteries of the EVs are evaluated as a black box. This means that the charging efficiency of the 

batteries does not depend on the charge power 
ch

jP , which can take any positive value within a certain 

range of nominal battery performance. This approach simplifies the model in comparison with the 
nonlinear representation used in [4]. 

In order to quantify the desired energy level of an EV’s battery obj

je  when connected, first, it is necessary 

to compute another set of energy levels. Thus, the arrival energy level arr

je  of the jth EV is determined 

based on its maximum battery capacity 
maxB

je , which is derived from the maximum state-of-charge 

maxSOC  and rated battery capacity BCj in kWh from Eq. (2), as well as the energy consumption rate 

ECRj and the daily travelled distance dj in km, as given in Eq. (3). The ECR is defined as the estimated 
average ratio of the electrical energy used per kilometre travelled for In-city, Highway, or Combined 
driving modes, expressed in kWh/km. 

j

B

j BCSOCe ⋅= max
max

 (2) 

 

jj

B

j

arr

j dECRee ⋅−= max  (3) 

Based on the arrival energy level, the desired energy level of the battery obj

je  and the required energy 

level req

je  can be obtained as follows: 

obj

j obj je SOC BC= ⋅  (4) 

 

arr

obj j jreq

j

ch

SOC BC e
e

η
⋅ −

=  
(5) 

where chη is the charger efficiency, and the desired state-of-charge objSOC  can be set to a specific value 

lower than or equal to the maxSOC ; which is decided by the owner.  



Additionally, the minimum energy level of the jth EV's battery minB

je  in Eq. (6) is used to verify that 

initial levels of 
arr

je and 
obj

je  are feasible to be assessed. This is calculated iteratively for each EV 

throughout an embedded For-While loop according to the flowchart in Fig. 1. Note that for a real 

application of the proposed method, both 
arr

jt  and 
arr

je  can be directly obtained from the energy 

management system (EMS) of the EVs when it is connected. Therefore, it is not necessary to consider 
both Eq. (3) and the flowchart. However, for energy planning studies, the whole method should be 
followed, as stated in this paper. 

j

B

j BCSOCe ⋅= min
min

 (6) 

 

 

 

 

 

 

 

 

 

 

 

Having considered charger efficiency within the required energy level in Eq. (5), the expected parking 

time p

jt  of the jth EV in Eq. (7) is obtained based on its maximum DC charging power max
chP . Note that it 

may vary due to the type of connection (single- or three-phase) and charging standards [21]. 

max

req

jp

j

ch

e
t ceil

P

  =  
  

 (7) 

Therefore, the expected disconnection time 
dis

jt  for vehicle j is determined the summation of the arrival 

time 
arr

jt and parking time p

jt : 

p

j

arr

j

dis

j ttt +=  (8) 

 

 

 

Fig. 1. Flowchart for verifying energy levels per EV based on the samples of driven distance 
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2.3. Energy boundaries of EVs 

Under the control of an aggregator, an EV j with a scheduled parking time has flexible charging capacity 
through its energy and power boundaries, which define a possible set of charging paths [22]. Thereby, 

the upper energy boundary upper

je  obeys to an immediate charging process up to reach the desired energy 

level, which can be lower than or equal to the maximum battery capacity. In contrast, the lower energy 

boundary lower

je  represents the curve with the maximum time delay ( )delay

jt  of the charging process. 

Conversely, the power boundaries refer to the instantaneous rated charging power at each time slot while 
the EV remains connected. However, before computing the energy boundaries, it is required to evaluate 

the number of discrete-time intervals int
jt  for each EV parked at home by considering a time step st  and 

an interval length 60stt =∆ , as follows: 

t

t
t

p

j

j ∆
=int  

(9) 

Based on arr

jt  and int
jt , the energy boundaries for vehicle j are determined using the proposed recursive 

discrete-time equations in (10) and (11). In this model, the upper energy limit is quantified starting from 
the arrival energy level of the jth EV up to the estimated plug-out time, i.e., it goes from a present state 
up to a future one. Conversely, the lower energy boundary is computed from the objective energy level 
of the jth EV up to reach the arrival energy level, i.e., it goes from a future condition up to a present one. 
Moreover, these expressions, in conjunction with the network's constraints, assure that during the 
optimisation process, the charging path of every EV remains within their energy limits. 

{ } EV

j

obj

jchch

upper

ktj

arr

j
upper

ktj
j

tk,etPe

k,e
e

arr
j

arr
j

Ω∈∀






+=∆⋅⋅+

=
=

−+
+ 1,,1,min

0

intmax

)1(,

)(, Κη
 (10) 

 

{ } EV

j

arr

jchch

lower

kttj

obj

j
lower

kttj
j

tk,etPe

k,e
e

j
arr
j

j
arr
j

Ω∈∀






+=∆⋅⋅−

=
=

+−+
−+ 1,,1,max

0

intmax

)1(,

)(,
int

int Κη
 (11) 

In detail, Eq. (10) ensures that the upper energy state of the EV j is equal to the arrival energy at arr

jt  and 

in later periods ( )kt arr

j +  could only be at most tP chch ∆⋅⋅ηmax  greater than the energy remaining from the 

previous period ( )1−+ kt arr

j . Moreover, it should also be no larger than the objective energy level. Eq. 

(11) foresees that the lower energy state of each EV at time dis

jt  must match with the objective energy 

level and in previous periods ( )ktt j

arr

j −+ int
 could be at most tP chch ∆⋅⋅ηmax  lower than its value at 

( )1int +−+ ktt j

arr

j  but cannot be lower than the arrival energy level. Fig. 2 exemplifies the energy 

boundaries of an EV j, which energy level follows an optimal charging trajectory up to reach the 

objective energy state insofar that set-point does not change if a) minB

j

arr

j ee ≥  or b) minB

j

arr

j ee = . 



 

Fig. 2. Energy boundaries of a scheduled EV with a) 
minB

j

arr

j ee ≥  and b) 
minB

j

arr

j ee =  

2.4. PV systems model 

The yearly solar irradiance and ambient temperature data are collected from [23] for modelling the 
uncertainty of PV generation. These data are used to obtain the estimated daily power production of a 
single-phase PV system by using the method of Araujo-Green [24] as shown in the boxplot1 of Fig. 3.  

Based on the PV power forecast, a math approximation for modelling the output power of PV inverters 
is proposed for the summer and winter seasons as presented in Fig. 3. Power is represented as a shifted 
cosine wave squared to smooth its edges with the peak at noon, as given in Eq. (12). Note that this fitting 
function also describes the uncertainty of PV power by considering the standard deviation value σ from 
the data used above. 

[ ]slotsN
slots

slots

i

PV

ti NtØib
N

t
N

aPP ,0,
2

2
cos

2

, =≠Ω∈∀±














 −−⋅⋅= σπ
 (12) 

where coefficients a, b define the period and wave shifting, and parameters c, d, allow truncating to zero 

the signal from 0=t  to cN slots  and from ( )dcNNt slotsslots −−=  to slotsN  in order to represent the 

absence of sunshine. Moreover, Pi is a power set point of the inverter connected at the household i, PV

tiP ,  

is the output power of the inverter hooked up at the household i at time t, and slotsN  is the number of 

time slots for evaluating the model. For any evaluation period T, tTN slots ∆= . All model parameters 

are given in Appendix B. 



 

Fig. 3. Boxplot for the PV inverter power derived from yearly meteorological data by using the model of Araujo-Green. 
Fitted approximations of PV inverter power for summer (dashed line) and winter (continuous line) seasons. 

1 Boxplot: The line that splits the box into two parts indicates the median of the data. The box represents the distance between the upper and lower quartiles, 
which is known as the interquartile range (IQR). The upper and lower lines are known as whiskers, which mark the data extremes. The whiskers also provide 
information about symmetry in the tails of the distribution. Any points lying outside the 1.5 × IQR around the box are known as “outliers” and are denoted 
by + symbols. 
 

3. Optimisation method 

3.1. Network sensitivities 

Unbalanced three-phase load flows in steady-state are used to generate the network sensitivity 
coefficients, which are subsequently used in the definition of network constraints. This task is performed 
using PowerFactory (PF) [25] in conjunction with Python [26]. In order to get the sensitivity values due 
to the addition of load and generation, a steady load of 1 kW is initially assigned to each household, 
which is the maximum average demand from all used power profiles. Then a load flow is solved to 

record the loading levels per phase on lines and distribution transformers, as well as the voltage at each 
household. Subsequently, load increases up to 2 kW at the first household, then the load flow is executed 
again, and the new results from the specified points on the network are stored. This data is then used to 
compute the sensitivities of voltage and loading due to the addition of load. For example, the voltage 



sensitivity is calculated as ( ) ( )base

i

new

i

base

i

new

i PPVVPV −−=∂∂ , where base

iV  and new

iV  represent the 

initial and new voltage level from the load flow due to the change in the steady-state power at every load 
i. A similar approach is considered for computing the loading sensitivities. To reflect the addition of 
generation, the initial load changes to 0 kW. Voltage and loading sensitivities for the network 
components of interest are obtained in the same manner. Note that before varying a new household load, 
the previous one is restored to its original power level. This routine is repeated for the whole set of 
households, lines and distribution transformers to obtain the sensitivity coefficients of the network. Only 
one set of sensitivities is calculated along the test period, as this reduces the computational burden and 
execution time of the algorithm. However, these sensitivity values cannot be expected to match those in 
which the load continually varies on the feeder. But these sensitivities allow quantifying the impact that 
multiple EVs and PVs, charging and injecting power simultaneously, can have on a particular node, 

service cable and distribution transformer on the network. 

3.2. Objective function 

With the energy boundaries, the aggregator seeks to coordinate the charging of all EVs to maximise 
customer satisfaction taking advantage of the available PV power without violating grid technical limits. 
Thereby, during the daytime charging of EVs, the proposed optimisation aims to improve the self-
consumption of PV power and reduce the dependence on the network. This means maximising power 
delivered to all EVs for a given period by optimising the charging rate of each EV connected. The 
optimised charging profile is centrally calculated based on an LP model which assures an even 

distribution of the power at each time slot for all EVs. Mathematically, the optimisation problem to be 
solved at t is as given: 

( ), , ,
1 0

slotsNH
EV P inc

i t i t i t
i Ø

i t

Max f P x
∀ ≠ = =

= − ∆ ⋅  (13) 

where H denotes the number of households being supplied by the DSO, and xi,t is a binary matrix 

( )
slotsNHx ×  such that 1, =tix  if the EV j is connected to the household i at time t, and 0 otherwise. It 

should be noted that int
jt  settles the availability span for vehicle j when it is connected to the household i. 

Additionally, ch

ch

ti

EV

ti PP η⋅= ,,  is the charging power in kW for the vehicle connected to the household i at 

time t, which can vary from zero up to the rated power of the charger. incP

ti,∆  is the increase in the rate of 

charge in kW for the vehicle connected to the household i at time t. This term is introduced as a penalty 

deviation variable to handle conditions in which a fixed rate of charge ( P∆ ) cannot be satisfied due to 

the lower energy boundary from constraint (17). Both EV

tiP,  and incP

ti,∆  are continuous decision variables. 

In the set of households HΩ , Ø  means that the optimisation problem discards the houses without a PV, 

an EV or both. This reduces the number of variables and constraints, and therefore the computational 
burden. However, in the post-optimisation process, such households are evaluated based on the 
outcomes obtained from the method. 

 

 



3.3. Constraints 

The objective function from Eq. (13) is subject to a series of constraints at each time slot to ensure a 
proper network operation with the embedded PV generation while supplying households and EVs 
demand. 

3.3.1. EVs constraints 

Based on the energy level of EV batteries, the charging rate of EVs is dynamically adjusted without 
violating grid technical limits as follows: 

max
,0 ,EV

i t ch ch HP P i Ø tη≤ ≤ ⋅ ∀ ≠ ∈Ω ∀  (14) 
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Following the linear objective function, Eq. (14) imposes that the charging power for the vehicle 
connected to the household i cannot exceed its power boundaries at any time step. Eq. (15) limits 

significant variations in the charging rate for consecutive time slots through a fixed set-point of P∆  that 

can be relaxed only when necessary using the penalty deviation variable incP

ti,∆ . This occurs for vehicles 

with narrow energy boundaries where a power boost is needed in the next time step for not violating the 
lower energy bound. Eq. (16) ensures that an increase in the charging rate of the EV connected to the 

household i should be no larger than the remaining capacity of the charger ( )Pchch

P P ∆−⋅=∆ ηmax
max . Eq. 

(17) states that the energy level for vehicle j, which is connected to household i, at every time k is within 
its energy boundaries. This energy state is detailed in Eq. (18) for the arrival time interval of vehicle j 

( )arr

jt  and later periods by considering the energy remaining from the previous period ( )1−+ kt arr

j  and 

the charging power at time k. Note that the indexes notation in Eq. (17) differs from Eqs. (10)–(11) by 
considering the household i to which the EV j is connected. 

3.3.2. Network constraints 

The addition of EVs and PVs along the network may cause a significant drop or rise in voltage 
magnitude at every load node. This depends on several factors, which includes the charging rate of the 
EV, the power injected by the PV system and their location in the network. To ensure that voltage 
magnitude is within the operating limits defined by the DSO, the following constraint is defined: 



( )min , , , , , , , , , max
1

,

, , ,

H
base EV PV EV PV

i t i i i t i i i t h i h t h i h t

h

H

V V P P P P V

i h Ø i h t

α β α β
=

≤ + ⋅ + ⋅ + ⋅ + ⋅ ≤

∀ ≠ ∈Ω ≠ ∀


 (19) 

where base

tiV ,  is the base voltage at the ith household node, ii ,α  and ii ,β  represent the sensitivity of 

voltage ( )PV ∂∂  at household node i due to power supplied to the EV i and power generated by the PV 

system i, ih ,α  and ih ,β  are the sensitivity of the voltage for household i as a result of power demanded 

by the EV h and power produced by the PV system h. Note that a negative sensitivity value in α  

represents a voltage drop in such node, while in β  that value will be positive, which indicates a voltage 

rise. Additionally, minV  and maxV  define the minimum and maximum permissible network voltage levels. 

It should also be noted that α  and β  are two square matrices of [ ]HH × , and the term hi ≠  means that 

i remains fixed while h varies.  

In addition to voltage levels, further constraints for maintaining the active power flow within limits are 
evaluated. This means that it is necessary to consider how the active power variation of PVs and EVs 
affects the loading level of the entire network by making use of the sensitivity coefficients. The 
proposed linearization for power flowing through the cables and distribution transformers of the LV-
network is presented as follows: 
 

( ) max
, , , , , , , , i,
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 (21) 

where base

tiLineP ,,ϕ  and base

tiTxP ,,ϕ  are the base loading levels in kW for the supplying cable i and distribution 

transformer i per phase ϕ  at time t. Moreover, ik ,,ϕµ , ik ,,ϕδ  and ik ,,ϕλ , ik ,,ϕε  are the loading sensitivity 

coefficients for each phase ϕ  of the service cable i and transformer i due to power demanded by vehicle 

k, and power generated by PV system k, both in kW. Note that a positive sensitivity value in µ  and δ  

represents an increase of the loading level on the main cable, whereas, in λ  and ε , those values will be 

negative, which indicates a reduction in the loading level. All these coefficients are three-dimensional 

matrices of ( )[ ]TxLineH &××ϕ . Lastly, max
iLineP  and max

iTxP  is the rated capacity in kW for both the service 

cable i and the distribution transformer i. Note that the initial voltage at households nodes and the base 
loading levels on main cable and distribution transformer are calculated beforehand as parameters 
through the unbalanced quasi-dynamic power flow for the test period T in PowerFactory. 

To exemplify the interaction between the aggregator from zone k and the household i, Fig. 4 shows a 
detailed structure including the PV inverter, EV charger, demand profile of the customer, and the 
embedded control. The unit with the embedded controller can manage and communicate with the power 
inverter, charger, and battery management system of the EV. In this study, only the computed charging 



power for the time interval ],[ dis

j

arr

j tt  is sent to each charging spot, once the optimisation problem has 

been solved. Therefore, at the end of the charging process, it is expected that each EV has reached its 
desired energy level based on Eq. (22). Lastly, Fig. 5 outlines the simplified procedure of the proposed 
centralised control method. 

,

dis
i

arr
i

t
end arr EV

i i i t H

t t

e e P t i Ø
=

= + ⋅∆ ∀ ≠ ∈Ω  (22) 

 

 

Fig. 4. Interaction between aggregator from zone k and household i 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Case Studies 

A feeder has been extracted from one real LV network in the North West of England [27] to investigate 
the applicability of the proposed method. This feeder is also known as the IEEE European Low Voltage 
Test Feeder. However, as this benchmark feeder does not physically consider the neutral conductor due 
to the Kron's reduction, the data was extracted from the original feeder. This radial distribution feeder 
supplies power to 55 single-phase households unevenly distributed per phase through 1.431 km of cables. 
This means that exist an unbalanced condition in the network with most of the loads connected to phase 
A. The feeder is connected to 11 kV medium-voltage network through an 800 kVA distribution transformer 
with a delta/grounded-wye connection. The rated phase-to-phase voltage at the secondary of the 

transformer is 400 V with %10±  allowable variation. It is assumed that the cross-section of the neutral 

conductor equals to phase conductor for both the three- and single-phase service cables. Specifications for 

End 

6. Compute the optimisation 
problem and extract the charging 
pattern of all EVs 

5. Define the linear optimisation 

problem using Eqs. (13)–(21) 

1.1. Steady-state unbalanced load flow: 
determine voltage and loading sensitivity 

coefficients 

1.2. Quasi-dynamic unbalanced load flow: 
obtain initial time-series of voltages and 
loadings levels 

4. Compute the expected daily 
power production of all PV systems 
using Eq. (12) or provide the 

forecasted time-series. 

2. Locate PV systems and EVs at 
network households 

3. Obtain the energy boundaries 
of all EVs using Eqs. (1)–(11) 

Fig. 5. Simplified flowchart of the proposed methodology 



the network model components can be found in [28]. The one-line diagram of the feeder is shown in Fig. 
6, which is fully modelled using PF.  

The load curve for each household was obtained from a pool of 100 load profiles given in [27,28], which 
were assigned in ascending order to each home. These time-series reproduce real patterns of domestic 
power consumption with a resolution of one minute. However, in this study, load profiles are 
subsequently downsampled to a time-series with a 10-minute time step. The loads are modelled as 
constant power (P) at a lagging power factor of 0.95.  

 

 

Fig. 6. Low-voltage test feeder for a) 60% of PV and EVs, b) 90% for PVs and 80% for EVs 



Initially, a penetration level of 60% for both the EVs and PVs in the feeder was considered. This means 
that 33 of the 55 households have both a PV and EV operating at certain time slots of the test period. 
This penetration level was deemed appropriate to assess the robustness of the proposed control charging 
strategy. However, in a scenario with a higher penetration level of EVs and PVs, without a proper 
control action, the required charging power would increase significantly in hours of high demand, 
decreasing the correlation with the PV output power. Therefore, this may cause an undesired operating 

condition in the LV network. Thereby, to demonstrate the need to use network restrictions under these 
conditions, a case with a penetration level of 90% of PV units and 80% of EVs for the winter case was 
evaluated. In this scenario, the method described in Sections 2 and 3 was employed with and without 
network constraints (i.e., Eqs. (19)–(21)). Both the EVs and PVs were randomly assigned among the 

households using a discrete uniform distribution { }551,U . The number of EVs and PVs connected per 

phase are presented in Table 2. The location of each EV and PV for both cases is shown in Fig. 6 and 
detailed in Appendix C. 

Households with EVs are equipped with a single-phase charging spot of 3.7 kW via a standard AC 
connection. The charger efficiency is assumed to be ηch = 0.92 [17]. The fixed variation for the rate of 

charge ( )P∆  in constraint (15) is set at 0.5 kW. In the first case, all EVs are simulated based on the 

specifications for a Nissan Leaf [29]: BC = 24 kWh and ECR = 0.1778 kWh/km. For simulating an EV 
with a higher energy requirement, in the second case, the electric Kia Soul (2018) [30] (BC = 30 kWh 
and ECR = 0.1679 kWh/km) was considered. For both cases, the battery energy levels are constrained to 

a 2.0min =SOC  and 95.0max =SOC  to avoid permanent battery damage or early ageing. Although the 

desired state-of-charge objSOC  depends on the user's driving needs, for simulation purpose, this was set 

to reach the maxSOC .  

Regarding the model presented in Section 3 and considering that residential PV systems can vary in a 
range from 2 to 5 kW [31], the PV units size at the evaluated households was limited to Pi = 3.7 kW, 
which is the maximum power for summer, with a unity power factor. However, for the winter season, a 
maximum power Pi = 0.8 kW was defined, as shown in Fig. 3. Additionally, the maximum and minimum 
allowable voltage at each time step is set to 0.9 p.u. and 1.1 p.u. The rated capacity of the main cable is 

215 A (i.e., max
1LineP  = 47.17 kW per phase, assuming a lagging power factor of 0.95).  

By considering that the initial penetration level is the most likely occurrence condition in the near future, 
one hundred series of simulations were carried out using the LV feeder in Fig. 6 a) for both the winter 
and summer seasons to prove the effectiveness of the proposed method. The first simulation was 
executed following the flowchart in Fig. 5, and the remaining ones were performed starting from step 3 
to 6. As the second case is a critical situation with less probability of occurrence, only a single 
simulation was carried out to assess the need for the proposed network constraints. Simulations were run 
for a test period T = 30 hours (i.e., starting from 00:00 to 06:00 the next day) with a 10-minute interval 
(i.e., 180 slots of time). The proposed model in Eqs. (13)–(21) is solved by CPLEX 12.9 under its API in 
Python (DOcplex). 

 

 



Table 2.  
Number of EVs and PVs connected per phase and penetration level 

 Case 1 2 
Number of 
Households 

EVs PVs EVs PVs 

Phase A 21 11 11 12 16 
Phase B 19 11 11 19 19 
Phase C 15 11 11 13 14 
Total 55 33 33 44 49 

 

5. Results 

By using the uncertainty criteria for the EVs presented in Section 2.1, the arrival time of EVs at home is 
randomly selected with a mean at 16:00 hours and a standard deviation of 3-h for both winter and 
summer. This was computed for the 100 simulations run per season, as shown in the boxplot of Fig. 7 a) 
and b). In both figures, the mean value of EVs that arrive at home per hour for winter and summer is 
represented by the green and magenta lines, respectively. For those EVs that arrive late, it is expected 
that these would charge up to the early morning. 

 

Fig. 7. Boxplot and mean value of EV arrival time during a) winter and b) summer in case 1 

Under the premise that the aggregator can manage the embedded control unit of each EV charger and 
monitoring the PV inverters from a remote location, Fig. 8–10 show how such control actions limit the 
loading level on the main service cable when connecting the EVs and PVs for winter and summer, 
respectively. Due to the lower number of solar radiation hours during winter, PV generation is much 
lower compared to the summer case, and hence, the reverse power flow on the main cable. In Fig. 8 and 
9, although phase A displays an initial higher loading level from 16:00 hours to 21:00 hours, the average 



loading level in all phases for that time range is always below the rated capacity of the main cable. Even 
with some charging outliers, the proposed control strategy limits the loading level on the main cable to 
its nominal value while ensuring the desired charging level of all EVs. The outliers from midnight to the 
early morning occur because some EVs arrive with a low energy level or come late for charging. 

 

Fig. 8. Boxplot of loading level per phase on the feeder's main cable based on 100 optimisation scenarios for winter in case 1 

 



 

Fig. 9. Boxplot of loading level per phase on the feeder's main cable based on 100 optimisation scenarios for summer in case 
1 

On the other hand, the three-phase average loading level is below 83 kW from 16:30 hours to 20:00 
hours during summer compared to winter thanks to the remaining PV energy downstream, which is used 
by the household loads and the EVs, as shown in Fig. 10. Since no control actions over PV generation 
are considered, it is assumed that the surplus power is injected into the network by selling it to the DSO.  



 

Fig. 10. Boxplot of loading level for the three-phase main cable based on 100 optimisation scenarios for a) winter and b) 
summer in case 1 

For comparison, Fig. 11 shows the aggregated charging power for the winter scenario if an uncontrolled 
charging event would occur, along with the aggregated charging profiles using the proposed control 
method with and without network constraints. As the PV generation is low during the winter, the self-
consumption for charging the EVs tends to be reduced, which increases the loading level of the main 
cable, as seen in Fig. 12. In this figure, the improvement of the loading level per phase on the main cable 
is achieved by considering network constraints.  

On the other hand, if only constraints for power- and energy-boundaries are considered, this can produce 
overload events at any phase during the simultaneous charging process, as shown in Fig. 12. Therefore, 
if the optimisation problem does not consider the proposed network constraints, a safe operative 

condition for the LV network cannot be guaranteed. 



 

Fig. 11. Comparison between uncontrolled- and controlled charging with and without network constraints (NC) in case 2 

 

Fig. 12. Comparison of the loading level per phase with and without network constraints (NC) in case 2 



Due to the rated power of the distribution transformer is much higher than that of the main cable, for this 
particular feeder, constraint (21) would not be violated. Therefore, by applying the optimisation method, 
the power level on the LV side of the distribution transformer will be equal to the one on the service 
cable.  

As an example to demonstrate that the proposed approximation (Eq. (19)) is valid, two scenarios from 
case 1 were analysed, i.e., scenarios 97 (winter) and 51 (summer). Fig. 13 and 14 show how voltage at 
household 53, which is located at the end of the feeder, is affected by the charging process and 
generation from other EVs and PVs. Both figures compare the initial voltage profile, the one computed 
from the optimisation and the one obtained using the quasi-dynamic load flow in PF. The second relies 

on utilising the sensitivity coefficients (SC), the optimised charging profiles of EVs and the expected PV 
power. The latter voltage profile is resulting from uploading the optimised charging profiles of EVs in 
PF. For both scenarios, all voltage values are within the operational limits of the network, which 
indicates that the voltage level is not the binding constraint for this particular feeder, and therefore the 
focus for the results will be on the loading levels, as shown in Fig. 8–10 and 12. 

Accuracy of the optimisation method was proved through the error in voltage computation from the 
results for both cases, as shown in Fig. 15 and 16. Voltage error along the test period was less than 0.2% 
and 2% for winter and summer, respectively. These values differ from one season to another due to there 
is a higher level of PV generation which increases the losses on the feeder, and only one set of SC along 
the test period is used. Now, if we compare the previous winter scenario with the second case (Fig. 15a) 
and 16), it is observed that the addition of new EVs and PVs will increase the voltage error due to just 
one set of sensitivity coefficients is following all changes in load during the test period. However, the 
error is still less than 1%, and hence, this exemplifies that the proposed linearization is still valid for a 
massive penetration level. 

Note that depending on the irradiance level, temperature and the load demand, the reverse power flow 
and its impact on voltage rise due to PV power will be at the most severe state at noon. This is when PV 
output power is at its maximum level, and power demand is the lowest. However, this condition can be 
mitigated by charging the EVs, taking advantage of the correlation that exists between them and the 

PVs. Therefore, thanks to the sensitivity coefficients for PV units in both loading and voltage level 
within the network restrictions, it is possible to reproduce such operative condition, as seen in Fig. 8–10 
and Fig. 12–14. 

 



 

Fig. 13. Voltage profile at Load 53 due to the effect of total charging power and the PV power during winter (case 1, scenario 
97) 

 

 

Fig. 14. Voltage profile at household 53 due to the effect of total charging power and the PV power during summer (case 1, 
scenario 51) 



 

Fig. 15. Voltage error at Load 53 by using the sensitivity coefficients for a) winter and b) summer in case 1 

 

Fig. 16. Voltage error at Load 53 by using the sensitivity coefficients in a higher penetration level of PVs and EVs in winter 
(case 2) 



5.1. Electric vehicles energy requirement 

In order to show the effectiveness of the proposed centralised charging strategy, it has been extracted 
four cases of EVs with different charging patterns and energy trajectories from scenario 51 (i.e., the case 
with a penetration level of 60%), as given in Fig. 17 and 18, respectively. These results come out of the 

parameters defined in Section 4 and a daily travelled distance { }41,61,78,34=jd  in km for EVs 

located at households 4, 20, 45 and 54, respectively. 

Fig. 17 shows the optimal charging pattern, time availability and power generated for the selected EVs 
and PVs. It is observed that the charging profiles satisfy both the objective function and constraints 

(14)–(16). For comparison, in Fig. 17a), the pre-set value of P∆  is kept during the charging process, 

whereas in Fig. 17d), e.g., the penalty deviation variable was used at time interval 92 to reach the 
required energy level faster due to its shorter time window in comparison to the one in other EVs. It is 
also noted that the proposed charging strategy automatically delays the charging process, when it is 
necessary, to meet the charging demand of all EVs. Besides, it can be seen that the EVs with an early 
arrival take advantage of PV output power to be charged. This significantly reduces the load level on the 
main service cable. 

 

Fig. 17. Optimal charging profiles for the EVs located at households a) 20, b) 54, c) 45 and d) 4 in case 1 



Fig. 18 reflects the energy paths from the selected EVs, which were obtained using the proposed control 
strategy. These energy trajectories correspond to the charging profiles in Fig. 17. To exemplify the 
energy requirements of EVs, in Fig. 18a), for the EV at household 20 the arrival energy is 

( ) ( ) 93.878 ×  0.1778 0.95 ×  2420 =−=arre kWh while the objective energy level is 

( )( )20 24  × 0.95   8.93 0.92 15.07reqe = − = kWh for a parking time of { } h57.307.1520 -ceilt p == , which is 

equivalent to ( ) 3060105int
20 ==t intervals of 10 minutes. These calculations were carried out in all 

simulations according to step three from Fig. 5. 

When the energy boundaries are too narrow, or the charging process is delayed, the energy trajectory 
tends to move towards the lower energy boundary, as shown in Fig. 18c) and d). However, for EVs with 
a longer charging time and a slight delay, the energy path would go through the middle of the energy 
boundaries, as given in Fig. 18a). On the other hand, if charging power varies once its rated capacity has 
been reached (Fig. 17b)), the energy trajectory would vary accordingly to these changes until meeting 
the required energy state, as depicted in Fig. 18b). Therefore, these results confirm the effectiveness of 
the proposed method. 

 

Fig. 18. Optimal energy trajectories for the EVs located at households a) 20, b) 54, c) 45 and d) 4 in case 1 

6. Conclusions 



This article has developed a new charging strategy to find in a decentralised fashion the best charging 
pattern that meets the energy requirements of each EVs connected to the LV network while taking 
advantage of the PV generation and maintaining the network within its operational limits. Another 
contribution is the development of an energy boundary model for EVs, which ensures that the proposed 
charging strategy finds an optimal charging path by dynamically adjusting a variable charging rate in 
conjunction with a fixed one to assure the technical limits of the network. This model is based on the 

daily travelled distance, arrival time, battery capacity and energy consumption rate. Moreover, a 
mathematical approximation for modelling the uncertainty of PV output power was also proposed, 
which was based on the appraisement of real data of irradiance and ambient temperature. The proposed 
strategy exploits the use of network sensitivity coefficients by linearizing both the loading levels and 
voltages of the network. This methodology is verified using real data from an LV feeder and load 
demand for winter and summer. Numerical results demonstrate that the proposed charging strategy is 
feasible and effective for finding the optimal charging profile of each EV while addressing network 
constraints. Besides, this charging strategy ensures an even distribution of charging power at each time 
slot for all EVs. Further, the proposed method can also be extended to define the most suitable PV 
export limits if exist a tighter requirement concerning the voltage level or loading level on the assets of 

the DSO. 
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Appendix A. Probability density functions for EV's behaviour 

Lognormal probability distribution 

If the logarithm of X is normally distributed ( ) ( )2,~ln σµNx , the lognormal probability distribution 

function with parameters μ and σ of the logarithmic values can be expressed as the Eq. (23).  
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Truncate probability distribution 

If X is a continuous random variable normally distributed N(μ, σ2) with mean μ and standard deviation σ, 
and an expected value within the range (a, b). The truncated normal probability density function φ is 
given by Eq. (24). 
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Appendix B. PV system model parameters 

Several major design parameters for the PV model are presented in Tables B.1 and B.2 as a reference. 

Table B.1 
Parameters of the PV module and inverter for the Araujo-Green model 

Parameter Value Unit 
Iscn 8.83  A 
Vocn 37.4  V 
Impp 8.31  A 
Vmpp 30.1  V 
NOCT 45 ºC 
Np 1  
Ns 15  
k 1.3806503·10-23  J/K 
q 1.60217646·10-19  C 
GSTC 1000  W/m2 
Tref 25 ºC 
β 0.0023 ºC-1 
ηinv 0.99  

 

Table B.2 
Parameters for the approximation of the PV inverter output power 

Parameter Summer Winter 
a 5/7 1 
b 2 2 
c 6 4 
d 3 2 

 

Appendix C.  

In Table C.1., rows highlighted in blue represent the EVs and PVs connected to a particular household 
whose results were displayed in Fig. 17 and 18. The red rows in Tables C.2. and Table C.3. depicts the 
household chosen to exemplify the impact of charging and generation in voltage profile, as shown in 
Fig. 13–16. These users were selected by taking into account their location and phase on the feeder in 
order to show the performance of the proposed decentralised charging strategy on the network.  
Table C.4.  
Location of EVs and PVs in the test feeder for a penetration level of 60% 

EV & PV Load Node Phase EV & PV Load Node Phase 
1 47 835 C 18 46 817 A 
2 39 701 C 19 10 248 B 
3 2 47 B 20 41 755 B 
4 55 906 A 21 43 780 C 
5 14 289 A 22 4 73 A 
6 19 342 C 23 45 813 B 



7 27 539 C 24 22 388 A 
8 28 556 C 25 12 264 C 
9 52 898 A 26 53 899 B 
10 32 614 C 27 8 208 C 
11 40 702 B 28 36 676 B 
12 54 900 A 29 34 629 A 
13 5 74 A 30 17 327 C 
14 35 639 B 31 11 249 B 
15 21 387 A 32 16 320 C 
16 23 406 B 33 37 682 B 
17 20 349 A  

 

Table C.5.  
Location of EVs and PVs in the test feeder for a penetration level of 80% for EVs and 90% for PVs 

Load Node Phase PV  EV Load Node Phase PV EV 
01 34 A 1 1 29 562 A 26 26 
02 47 B 2 2 30 563 A 27 27 
03 70 A 3 - 31 611 A 28 28 
04 73 A 4 - 32 614 C 29 29 
06 83 B 5 5 33 619 C 30 - 
07 178 B 6 6 34 629 A 31 31 
08 208 C 7 7 35 639 B 32 32 
09 225 A 8 8 36 676 B 33 33 
10 248 B 9 9 37 682 B 34 34 
11 249 B 10 10 38 688 B 35 35 
12 264 C 11 11 39 701 C 36 36 
13 276 B 12 12 40 702 B 37 37 
14 289 A 13 - 41 755 B 38 38 
15 314 B 14 14 42 778 C 39 39 
16 320 C 15 15 43 780 C 40 40 
17 327 C 16 16 44 785 B 41 41 
18 337 C 17 17 45 813 B 42 42 
21 387 A 18 18 47 835 C 43 43 
22 388 A 19 19 48 860 A 44 44 
23 406 B 20 20 49 861 A 45 45 
24 458 C 21 21 50 886 B 46 46 
25 502 A 22 22 51 896 A 47 47 
26 522 B 23 23 52 898 A 48 - 
27 539 C 24 24 53 899 B 49 49 
28 556 C 25 25  
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