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Robotic ecologies are systems made out of several robotic devices, including mobile robots, wireless
sensors and effectors embedded in everyday environments, where they cooperate to achieve complex
tasks. This paper demonstrates how endowing robotic ecologies with information processing algorithms
such as perception, learning, planning, and novelty detection can make these systems able to deliver
modular, flexible, manageable and dependable Ambient Assisted Living (AAL) solutions. Specifically, we
show how the integrated and self-organising cognitive solutions implemented within the EU project
RUBICON (Robotic UBIquitous Cognitive Network) can reduce the need of costly pre-programming and
maintenance of robotic ecologies. We illustrate how these solutions can be harnessed to (i) deliver a range
of assistive services by coordinating the sensing & acting capabilities of heterogeneous devices, (ii) adapt
and tune the overall behaviour of the ecology to the preferences and behaviour of its inhabitants, and also

Planning

(iii) deal with novel events, due to the occurrence of new user's activities and changing user's habits.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Current smart home solutions utilize sensors and micropro-
cessors pervasively deployed throughout the home to collect
information which is then exploited to perform useful tasks, as
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monitoring the daily activity, safety, health and security of the
house occupants.

One of the key drivers of this type of solutions is the need to
assist the ageing population, and address the associated social
impact due to the increase on the cost of formal health care and
the shortage of caregivers by delivering Ambient Assisted Living
(AAL) services.

Notwithstanding its potential benefits to the user life style, such
as allowing elderly persons to live independently in their own
homes and postponing or perhaps even avoiding a potential move
to a residential care facility, the technology is far from reaching
widespread adoption by consumers. Commercial products are
mostly limited to basic monitoring services and suffer from a low
user's acceptance rate due to their poor reliability and still prohi-
bitive costs, which often include installation, certification, testing,
customization charges and monthly monitoring fees. The perceived
value and trust in this type of solution can be seriously undermined
and curbed by constant monitoring and by ill-advised or poorly-
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timed interventions, especially when they are based on pre-
programmed models of user behaviour and/or by relying solely on
knowledge that was imbued in the system at design time.

A key source of the complexity associated with effective smart
environments in general is the inherent heterogeneity of the end-
user population, their housing arrangements, their individual situa-
tions and requirements. On one hand, complete off-the-shelf
systems that successfully addresses such disparate requirements
are unlikely to materialise. On the other hand, customized solutions
for individual circumstances do not have the ability to respond to
the users' in-situ response or smoothly adapt to changing contexts
and evolving users' needs, habits and preferences.

We argue that maximum gain will be attained only by factoring the
need for evolution and adaptivity into the design and implementation
of smart environments. These should not only be robust and easily
maintainable, but must also be able to self-configure and even evolve
to meet the requirements of individuals as their needs and circum-
stances change. Adaptation should be supported both in the way these
systems adapt to circumstances in the physical world they inhabit, and
in the modular way they combine existing approaches and use
available components and computational resources.

The traditional devices found in a smart environment are being
increasingly augmented by the rapid introduction of robots in homes.
The service robot market, including domestic robots, is predicted to
experience a ten-fold growth in the next 20 years (http://www.ifr.
org/service-robots/statistics, 2014). Evidence of their role in domestic
settings range from autonomous but specialized products, such as
the Roomba vacuum cleaner (http://www.irobot.ie/Roomba,); to
telepresence robotic healthcare solutions (e.g. Coradeschi et al.,
2013); and to the networked robots being validated in the AAL
domain (http://www.robot-era.eu/robotera,).

The view presented in this paper is that the increasing addition
of networked devices, cheap robotic hardware, wireless sensors,
actuators and other smart artefacts to our environment provides a
powerful impetus for building assistive smart environments
through a cognitive robotic approach. Specifically, Robotic Ecologies
(Saffiotti and Broxvall, 2005) can provide complex services with
their ability to acquire and apply knowledge about their environ-
ment, exploit the flexibility given by robots' mobility, and coordi-
nate actions and information exchange between heterogeneous,
and simple devices. Recent advancements developed within the EU
project RUBICON (Robotic UBIquitous COgnitive Network http://
www.fp7rubicon.eu, 2014; Amato et al., 2012) make these system
able to pro-actively assist the users in their activities by learning to
adapt to changes in the environment and in users' habits.

The remainder of this paper is organized in the following manner:
Section 2 discusses the benefits of a robotic ecology design. It also
reviews relevant related work and outlines the challenges associated
to build integrated systems and re-use many of the machine learning
and artificial intelligence techniques already proposed in the litera-
ture. Section 3 outlines the architecture of the integrated system
developed in RUBICON, before examining in detail each of its
components. Section 4 illustrates how the interplay between these
components can be harnessed to deliver a family of assistive services,
while allowing to adapt to dynamic situations and also to newly
discovered habits and user activities. To this end, we provide an
exemplification of the cognitive ecology operation within a real-
world case study. The case study is documented with supplemental
material, attached to this paper, in the form of a video that captures
all the key phases of our experiments.

2. Cognitive robotic ecologies

In Saffiotti et al. (2008), Saffiotti and Broxvall discuss the
implications of their PEIS-Ecology instantiation of the Robotic

Ecology approach from an ecological point of view, by conceiving
the interaction between each device and its environment in terms
of mutuality and reciprocity. The devices in the ecology achieve
complex tasks by performing several steps in a coordinated fashion
while also exchanging sensor data and other useful information in
the process.

Especially when combined with basic human-robot interaction
(HRI) capabilities, even simple domestic robots may be used to
support a number of useful and modular assistive services in this
way. Consider these simple examples. A robotic ecology can
monitor the strength of the radio signals emitted by wireless
sensors pervasively embedded in the environment in order to
localize both the robots and the users. By analysing these signals, a
robot can inform the elderly person who lives alone that she has
forgotten to switch off the stove, or that the main door is not
locked when she goes to sleep. A robotic ecology with multiple
robots may employ a vacuum cleaning robot to help the user clean
the apartment, while another robot may help the user to manage
and monitor her health conditions. For example, the robot may
remind the user to take her medicine, when the sensors in the pill
dispenser and those located in the kitchen show that the user had
not taken her prescribed pills after her meal. The robot may also
prompt and motivate the user to maintain a healthy and active
life-style, for instance, by reminding her to keep rehydrated,
perform her daily exercise routine, and control her heart rate
afterwards.

Noticeably, the embodied nature of its devices is what makes
confronting an ecological view in a robotic ecology characteristi-
cally different from what is usually done in pure software systems.
Most importantly, there is no sensing and interaction with the
physical world in the domains usually addressed with orchestra-
tion and dynamic composition of web-services. In addition, self-
configuration and self-adaptation are not the main focus of other
approaches related to Robotic Ecologies. In particular, works in
Cyber-Physical Systems (CPS) put more emphasis on formal
models and large scale deployments, while works in Internet of
Things (IoT) systems put more emphasis on knowledge services
than on action services.

Building smart domestic spaces with a Robotic Ecology design
reduces application complexity and costs, and enhances the
individual values of the devices involved. However, robotic ecol-
ogies are not dissimilar to other smart environments in their basic
requirements for assessing the state and the needs of their users,
and deciding how to best assist them.

First of all, machine learning techniques for human activity
recognition (HAR) can be harnessed to merge and interpret the
information gathered by multiple noisy sensors (Tapia et al., 2004;
Ye et al., 2012; Alam et al., 2012; Roggen et al., 2011; Puteh et al.,
2013) in order to determine the state of the user, and possibly
predict their behaviour. For instance, by exploiting the stream of
sensor data gathered from pressure sensors placed under the
cushions of the sofa, and a networked bracelet equipped with a 3-
axis accelerometer, a HAR system may be trained to recognise
when the user is exercising and also distinguish that event from
the one in which the user is relaxing on the sofa. A number of
initiatives have successfully exploited exploratory data analysis
techniques to discover users' behavioural patterns (Cook and
Krishnan, 2014). The same systems can be used to detect anoma-
lies in users' behaviour, such as deviation from daily routines
which may be symptoms of problems worthy of notification to
carers or to the users directly (Jakkula and Cook, 2011).

Secondly, pre-programmed domain knowledge, in terms of
service rules stating relations that a human domain expert has
identified between sensor data and/or inferred context, and robot
services, may be used at this point to know when to provide
contextualized assistance to the users (Fratini et al., 2008). In the
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active life-style scenario above, these techniques may be used to
define a rule such as remind the user to measure her heart rate five
minutes from the end of her daily exercise routine. Dedicated user
interfaces can also be exploited to involve the final user in the
definition of personalised service rules (Saunders et al.,, 2013).
Alternatively, Q-learning or other adaptation policies based on
utility maximization can be exploited to automatically learn useful
automation patterns (Tapia et al.,, 2004; Rashidi, 2009; Aztiria
et al,, 2013). The user can be involved also in this adaptation
process, for instance, with user interfaces enabling them to
manually activate or rate their automation preferences and the
ones automatically selected by the system (Rashidi, 2009).

Finally, plan-based control approaches (Saffiotti and Broxvall,
2005; Lundh et al.,, 2007) can be used to decide which robotic
devices and/or software components must be activated, what they
need to achieve, and what information they should exchange in
the process in order to provide context-aware assistance to the
user. One of the key advantages of using planning techniques with
robotic ecologies is the possibility of using alternative means to
accomplish application goals when multiple courses of action are
available, to increase the robustness of the overall system. For
instance, a robot may be able to localise itself through the use of its
on-board laser sensor, but also by detecting RFID tags placed
under the floor, if the more precise laser-based localization fails for
some reason (Bacciu et al., 2014a).

Instantiating the right combination of the approaches dis-
cussed above is not a straightforward decision. Each of them can
suffer from a number of limitations and there are difficulties also
in the way they are usually combined, especially if they need to be
applied in a robotic ecology context.

First of all, the majority of HAR solutions relies exclusively on
supervised information available previously to system deploy-
ment, which demands time consuming annotation of users'
activities to build up labelled training examples. Besides the cost
and the technical problems associated with data annotation, such
an approach assumes that only activities for which training data
was available before system deployment will be recognized in the
future. This makes it impractical to account for novel users'
activities as well as major changes in users' habits.

Secondly, the majority of activity discovery techniques are poorly
integrated with HAR solutions. Rather, they take information col-
lected by sensors as a starting point and then discover frequent
patterns by analysing the history of sensor data that can be associated
with different actions carried out by the user (Jakkula and Cook,
2011; Rashidi et al.,, 20114, 2011b; Aztiria et al., 2012; Lotfi et al., 2012;
Aztiria et al., 2013; Cook et al., 2013a). Besides the missed opportu-
nity for building integrated, efficient and modular solutions, it is
difficult for these systems to account for the richness of hetero-
geneous sensor sources to which HAR solutions are now accustomed.
Consequently, it is common for these systems to be limited to the
offline analysis of only binary sensor data. Only a few past attempts
in the same domain have demonstrated the value of combining
activity detection with pattern discovery—although with solutions
not designed with a robotic ecology in mind. In particular, (Cook et
al., 2013a, 2013b) have shown how unsupervised discovery can shed
light on users' behavioural patterns by discovering patterns in the
data that do not belong to a predefined class. Segmenting the data
into learnable classes has been proved to boost the performance of
activity recognition algorithms, while also reducing their reliance on
costly samples for supervised learning. However, only the activity
recognition algorithm in those examples is able to run online, while
the pattern recognition algorithm is run offline, and only on binary
sensor data. Other solutions have built a hierarchical model of user's
behaviour, using supervised methods to learn low-level activities (e.g.
eating, walking, sitting, standing), in combination with topic-based,
unsupervised discovery of more complex activities (e.g. having lunch,

commuting, office work, (Huynh et al.,, 2008; Niebles et al., 2008).
The solution proposed by Wan et al. (2014) considers that the home
occupants maintain a relatively regular routine. Their method per-
forms online event segmentation by extracting different threshold
parameters from past sensor data. Contrary to our approach, they do
so by relying on the assumption that there will be no significant
changes to the user's daily routine.

Thirdly, existing plan-based and adaptive control solutions
(Tang and Parker, 2005; Saffiotti and Broxvall, 2005; Vig and
Adams, 2006; Lundh et al.,, 2008) are ill suited to be used in
robotic ecologies operating in real settings, where they will be
subjected to multiple, dynamically changing and possibly conflict-
ing goals (e.g. recharge batteries versus exploration, cleaning the
kitchen versus reminding the user to measure her heart rate). In
addition, since they will typically find multiple options to satisfy
each goal, robotic ecologies need the ability to evaluate different
strategies in terms of resource utilization and time-frames. More-
over, past examples used in AAL applications, such as (Saffiotti and
Broxvall, 2005) have strictly relied on pre-defined models of the
robots, of their users, of the environment, and of its associated
dynamics. These models can be used to find strategies to coordi-
nate the participants of the ecology and to react to perceived
situations, but they lack the ability to pro-actively and smoothly
adapt to evolving contexts. These limitations make such systems
still difficult to deploy in real world applications, as they must be
tailored to the specific environment and application. Relying on
the same solutions to support the operations of robot ecologies in
real settings would quickly become ineffective, unmanageable and
prohibitively costly.

Finally, user-interfaces give the application designer and, to a
limited degree, the final user(s) some control on personalization
and service customisation features. However, such an approach
puts an additional burden on the developers to model each
possible situation, and on the final users to customize and adapt
each service to their specific needs. We argue that such solutions
are only feasible if counter-balanced by systems with a degree of
autonomy and able to use their past experience to refine but also
to extend their capabilities.

3. The RUBICON architecture

RUBICON adopts a modular design, which builds and integrates
a number of different solutions, to deliver robotic ecologies with
the ability to self-adapt to their environment and to their user.

Such an approach stands upon a modular software suite made
out of a series of interacting layers, as depicted in Fig. 1. Each layer
is designed to (i) attend to one of the pivotal roles in the system;
(ii) exhibit a degree of internal self-organization in order to suit
gradually evolving settings; (iii) cooperate via well-defined inter-
faces with the other layers, so that the system as a whole can more
easily adapt to new situations.

Sitting at the heart of the RUBICON system is a Communication
Layer (Amato et al., 2012), dealing with how data and functional-
ities are shared between system components, including distribu-
ted software components, robots and heterogeneous wireless
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Fig. 1. High-level RUBICON architecture illustrating its modular integration
between its cognitive capabilities.
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sensor and actuator networks. The Communication Layer re-uses
and combines existing wireless sensor networks (Amato
et al, 2010) and peer-to-peer communication middleware
(Broxvall et al., 2007). This allows system developers to frame
the robotic ecology as a multiagent system in which each device is
modelled as an autonomous agent with sensing and acting
capabilities (Dragone et al., 2012).

The key factors to enable goal-oriented and adaptive beha-
viours in the ecology are to (i) extract meaning from noisy and
imprecise sensed data, (ii) to learn what service to pursue, and (iii)
how to pursue them, from experience, rather than by relying on
pre-defined goal and plan selection strategies.

The first of these challenges is met by the Learning Layer (Bacciu
et al,, 2012), a distributed and adaptable learning infrastructure that
can be used to support a variety of learning requirements of a robotic
ecology. The Learning Layer processes streams of data gathered by the
sensors in the ecology to classify events and delivers predictions about
the state of the ecology and of its users. The Learning Layer can be
trained, for instance, to forecast the exact location of the user by
examining the history of the RSSI measured between a wearable
device worn by the user and anchor motes embedded in the
environment, or to provide timely and predictive information on the
activities being performed by the user, such as recognizing that the
user is cooking by analysing the signal and temporal pattern received
from sensors installed in the kitchen, such as switches triggered upon
opening and closing the cupboards and refrigerator. Finally, the
Learning Layer allows the incremental acquisition and deployment
of new computational learning tasks, in order to adapt to new
environmental and/or user conditions.

The second challenge is the responsibility of the Cognitive
Layer (Ray et al,, 2012; Leng et al., 2013). A distinct feature of the
RUBICON's Cognitive Layer is that it does not analyse sensor data
directly, but it reasons over the output of the Learning Layer. These

capabilities are exploited to learn to predict the need for activating
appliances and/or robotic services to suit the preferences and the
requirements of each user. In addition, by examining the output of
the Learning Layer over time, the Cognitive Layer is capable of
online novelty detection to identify novel situations, for example,
corresponding to previously user's activities. The system's
response to the detection of these new situations is to trigger
and feed the incremental learning mechanism of the Learning
Layer with teaching information related to their occurrence. In this
manner, those situations will be directly recognized by the Learn-
ing Layer, by exploiting its distributed learning mechanisms, and
thus also included in further reasoning in the Cognitive Layer.

The final challenge is met by the Control Layer (Di, Rocco 2013),
a plan-based executive component providing high level control
over the nodes within the ecology. The Control Layer finds, realizes
and monitors collective and adaptive strategies to satisfy the goals
set by the Cognitive Layer. It is also capable of self-organisation in
the way it uses available resources (e.g. robots, actuators, sensors)
in the process.

These layers are briefly discussed in the following sections,
while reports on both theoretical details and empirical evaluations
of each layer can be downloaded from http://www.fp7rubicon.eu
(2014).

3.1. Distributed adaptive memory for sensor timeseries

The Learning Layer realizes a distributed, adaptable and robust
learning infrastructure for the RUBICON ecology that is specifically
tailored to deliver short-term predictions based on the temporal
history of its input signals. These include information gathered
from the sensors embedded in the environment as well as from
off-the-shelf software components running within the ecology. It
does so through a distributed neural computation comprising
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Fig. 2. High-level view of the learning layer distributed learning system: blue boxes with solid contours denote different devices (of various computational capabilities);
orange boxes with dashed contours identify relevant software agents composing the learning system. A special device, called the Learning Gateway, hosts the bulkier
learning mechanisms, such as feature selection and incremental learning, as well as a mirror copy of the distributed learning modules. Online learning functionalities are
instead distributed on the single host devices. The parameterization of the Echo State Network model is shown on a zoomed view of an ecology node. (For interpretation of
the references to color in this figure caption, the reader is referred to the web version of this paper.)
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independent learning modules deployed on the ecology nodes
that interact and cooperate through synaptic communication
channels provided by the Communication Layer.

Fig. 2 provides an high-level view of the learning system that
highlights how the learning modules are distributed across a
variety of ecology participants. Online learning functionalities are
distributed on each device in the ecology, while the bulkier
learning mechanisms, as well as a mirror copy of the distributed
learning modules, are deployed on a Learning Gateway.

The learning modules are the key learning machinery under-
lying the Learning Layer and they have been designed based on
two cornerstones, namely: (i) the need to deal with time-
dependent and noisy data typically observed in AAL solutions,
and (ii) the heterogeneity of the computational resources of the
ecology devices, which demands learning models with limited
computational requirements. Based on such considerations, the
learning modules have been realized by Echo State Networks
(ESNs) (Jaeger and Haas, 2004), a recurrent neural model from
the Reservoir Computing paradigm, characterized by a good trade-
off between computational efficiency and ability to deal with
dynamic systems and noisy data.

ESNs are used to implement non-linear dynamical systems,
being composed of a recurrent non-linear part, called reservoir and
of a non-recurrent linear part, called readout. From a dynamical
system point of view, by updating a network state at each time
step of computation, the reservoir provides the model with a non-
linear dynamical memory of the past input history. The extreme
efficiency of training of the ESN approach, with respect to standard
recurrent neural networks, stems from the fact that only the
readout component (i.e. W;, and W, in Fig. 2) is trained, while
the reservoir part (i.e. W in Fig. 1) is left untrained after being
initialized under the constraint of the Echo State Property (Jaeger
and Haas, 2004; Gallicchio and Micheli, 2011). The Learning Layer
provides a variety of learning mechanisms that allow to continu-
ously adapt the knowledge captured by the distributed memory. A
Training Agent component (deployed on the Learning Gateway)
manages the training information received by the Learning Layer
and takes responsibility for running the more computationally
demanding processes. These include (i) an Incremental Learning
mechanism, which allows to incrementally acquire new learning
tasks (i.e. new predictions to be performed) or to re-train from
scratch the existing ones by exploiting the mirrored copy of the
learning models in the Network Mirror, and (ii) a set of Feature
Selection mechanisms to allow to automatically filter out those
input sources that are either redundant or provide irrelevant
information. Finally, a lightweight Online Learning mechanism is
implemented on all the ecology nodes that allow to refine the
predictions of the embedded learning modules based on instanta-
neous supervised or reinforcement teaching signals.

3.2. Cognitive layer

There are three core modules in the Cognitive Layer; namely
(i) a cognitive memory module, (ii) a cognitive reasoning module and
(iii) a cognitive decisions module. The cognitive memory module is
responsible for holding current and historical states of the RUBI-
CON ecology as perceived and processed by the Learning, Control
and Cognitive layers. This is implemented through a MySQL
database and allows interaction between the layers via PEIS
middleware. The two primary components of the Cognitive Layer
(Ray et al., 2012; Leng et al., 2013), which utilise this information,
are the reasoning module, based on a self-organising fuzzy neural
network (SOFNN), and the decision module, based on a Type-2
fuzzy neural network (FNN).

Reasoning Module: The SOFNN (Leng et al., 2004) is a hybrid
network which has both reasoning and learning capabilities that

can be used to model and forecast complex nonlinear systems. It is
a five-layered network consisting of an input layer, an Ellipsoidal
Basis Function (EBF) layer, a normalised layer, a weighted layer,
and an output layer. Adding and pruning strategies are utilised to
enable the self-organising capability to produce a fuzzy neural
network with a concise and flexible structure. This capability
ensures that the SOFNN structure is continually adapting to the
input data to decrease errors during learning such that the
cognitive layer maintains good performance in dynamic AAL
applications. The SOFNN is also ensures model compactness as
its structure and parameters are determined from the available
data. The number of inputs to the network is normally fixed
although the architecture employed in this work includes the
capability to adapt its input structure based on variations of the
dimension of the input data.

Decision Making Module: The decision module integrates the
status outputs generated by the reasoning module to generate
decision signals that are then interpreted as goals of the RUBICON
ecology. To accommodate noise and uncertainty of the generated
status outputs, the decision module needs to show a high level of
robustness. To this end, an SOFNN based on Type-1 fuzzy sets is
developed, which provides a degree of robustness to noise due to
the inherent approximate reasoning capability of the Type-1 fuzzy
sets. However, it has been demonstrated that an additional level of
uncertainty can be mitigated by exploiting Type-2 fuzzy sets
(Zadeh, 1975) which describe the membership functions as a fuzzy
set rather than as crisp numbers. Incorporating a Type-2 approach
in a fuzzy neural network enhances its ability to handle uncer-
tainty which is important in the AAL settings where the robotic
ecology operates.

The Type-2 ENN is created by combining the SOFNN and a
Type-2 fuzzy learning system; the strategy for development
exploits the following steps:

1. A trained SOFNN structure, which is a Type-1 fuzzy structure, is
obtained.

2. This Type-1 fuzzy structure is then used to initialise the
parameters of a Type-2 fuzzy neural network structure.

3. The initialised Type-2 structure is trained off-line using gradi-
ent descent and Kalman filtering algorithms.

4. The final output of the system can be generated after informa-
tion has passed through type-reduction and defuzzification.
This results in a decision module (illustrated in Fig. 3) that
responds well to high levels of noise, thus adding robustness to
the cognitive architecture.

Finally, the decision process is supplemented with a secondary
system which supports the cognitive role in the form of novelty
detection. Novelty detection can be defined as the process of
identifying interesting new stimuli that are different from any-
thing known before (Chandola et al., 2012; Marsland, 2003). In this
sense, novelty detection can be seen as a form of selective learning
which treats any experience which falls outside of those seen
during training as novel. A number of novelty detection methods
have been proposed in the literature, mainly focussing on detect-
ing anomalies and outliers, i.e. identifying patterns that do not
conform to expected behaviour (Chandola et al., 2012; Marsland,
2003; Markou and Singh, 2003; Hodge and Austin, 2004). Typi-
cally for these problems there are substantial data about the
normal classes but very little data displaying the novel features
that should be detected. Hence, it is essential to learn a model of
what is normal and then attempt to detect deviations from this
model. Within an AAL application, novelty detection serves to
compile a list of an inhabitants activities in terms of sensor
readings emanating from the Learning Layer during a training
period. This set becomes what is deemed normal. Significant
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Fig. 3. High-level view of the cognitive layer architecture, illustrating the combination between the Type-1 and Type-2 fuzzy reasoning components.
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deviations from what is normal are considered novel and cause
the system to act on this new information by presenting the
Learning Layer with teaching information related to a possible
new activity. Further details on this secondary support system,
including how its memory is managed is presented in (Vance et al.,
2014).

3.3. Configuration planning

At the heart of the Control Layer lays a configuration planner: a
planner system that generates fine-grained plans which specify
the causal, temporal, resource and information dependencies
between the different components of the robots and devices in
the robotic ecology. For example, a configuration plan may
indicate that robot-1 must navigate to the kitchen while taking
location input from the camera-based localization system, and
after the kitchen automatic door has been opened. The type of
configuration planning used in RUBICON was initially developed in
the context of PEIS Ecologies (Lundh et al., 2008), but similar
approaches were proposed, e.g., by Tang and Parker (2005) and by
Vig and Adams (2006).

The configuration planner is a constraint based planner (see Di,
Rocco 2013) for a more detailed technical description. It is
grounded on the notion of state variable, which models elements
of the domain whose state in time is represented by a symbol.
State variables represent parts of the real world that are relevant
for the planners decision processes. These include the actuation

and sensing capabilities of the devices in the RUBICON ecology, as
well as physical features in the environment. For instance, a state
variable can represent the actions of a given robot, whose mean-
ingful states might be “navigating”, “grasping” and “idle”. Another
state variable can represent the state of a given light which can be
“on”, “off” or “broken”. Goals are also represented through specific
values of state variables. The possible evolution of state variables
in time are bound by temporal constraints, e.g., stating that
navigation must occur while the light is on, or that after navigation
is completed the robot will be located at the kitchen. We represent
temporal constraints by an extension of Allens Interval Algebra
(Allen, 1984).

State variables and constraints are maintained in a constraint
network. The configuration planning process manipulates this
network by incrementally adding variables and constraints, until
the network contains a feasible plan that connects the initial state
to the goals. The resulting constraint network represents one or
more temporal evolutions of the state variables that guarantee the
achievement of the goals under nominal conditions. The config-
uration planner is itself composed of several solvers which all
manipulate the same shared constraint network. Each solver takes
into account a specific type of constraint, e.g., causal, topological,
information, temporal, or resource constraints. The solvers are
orchestrated by a meta-CSP approach (Fratini et al., 2008). The
configuration planner operates in a closed loop at a cycle of about
1 Hz. At each cycle, the constraint network in the planner is
updated by an observer to account for the current state of the
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RUBICON ecology as well as goals newly posted by the Cognitive
Layer, and the solvers are re-invoked to update the plan if needed.
The conceptual structure of the configuration planner is shown in
Fig. 4.

4. Powering AAL solutions with RUBICON

The solutions outlined in the previous section have been
evaluated both in isolation and as part of integrated systems (Di,
Rocco 2013; Palumbo et al.,, 2013; Bacciu et al., 2014a, 2014b). In
our previous publications we have discussed the performances of
the multi-layered RUBICON approach in a smart home environ-
ment. In such a context, we have described how our system can
identify and react to user needs, activities and preferences,
learning to automatically perform robotic services in relation to
the activities of the user, e.g. cleaning the floor after having
recognized that the user has had her meal.

We begin here from an initial system configuration in which the
Learning Layer has been trained to provide timely and predictive
information on users' location, i.e. in the hall, in the living room, in
the kitchen, in the bedroom or outside, and on whether the user is
performing a range of daily-life activities, i.e. eating, setting table,
cleaning, washing dishes, preparing food, exercising, relaxing,
sleeping or entering the house. Such a system is trained under
factory conditions using a purposely collected HAR dataset, com-
prising a large set of sensor data streams and ground-truth
information gathered in a smart-home environment. Although out
of the scopes of this paper, a detailed analysis of the overall training
phase and of predictive performance achieved on the considered
HAR tasks (reaching test accuracy in the range of [0.84, 1.00] for the
different indoor locations and baseline daily-life activities) is con-
tained in our reports (see http://www.fp7rubicon.eu, 2014).

In here we focus on the operations of the integrated systems
and, more specifically, on its ability to evolve from its initial
configuration. Noticeably, while the initial training phase of the
RUBICON relies on the provisioning of supervised information to
the Learning Layer, a robotic ecology can use this as a starting
point, while it adapts to its new environment and to its user.

Fig. 5 illustrates an extract of the outputs of the Learning Layer,
when the user has carried out her daily exercise routine and then
relaxed on the sofa. At this point, the user has also measured her
heart rate by using a bluetooth-enabled pulsometer. We use a
magnetic sensor in order to detect whenever the user takes the
pulsometer from its box. The outputs in Fig. 5 correspond to
relevant user activities to be recognized, where a value approach-
ing +1 denotes maximum confidence on the activity being
performed, while values approaching 0 denote increasing con-
fidence on the activity not being performed.

Over time, the Cognitive Layer successfully learns to use the
outputs of the Learning Layer to predict the occurrence of the
event raised by the opening of the box with the pulsometer. Fig. 5
also shows the Cognitive Layer's response to the expected state of
the ecology in the situation where the user was relaxing after her
exercise but forgotten to measure her heart rate. Based on the
analysis of past instances, the Cognitive Layer signals to the system
when it is time for the user to do that.

The signal received from the Cognitive Layer is interpreted by
the Control Layer as a request to have one of the robots in the
household approach and remind the user to measure her heart
rate. In this example, the resulting plan is straightforward. Since
the robot was previously idle, it is tasked to approach and prompt
the user. Fig. 6 shows a sequence of frames (extracted from the
video attached to this paper) showing the events just described.
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Fig. 5. Example output of the learning layer (a-c) while the user performs her daily
exercise routine, and output of the cognitive layer (d), after it has learnt to request

the delivery of the heart monitoring (HM) equipment while the user relaxes after
her exercise.

4.1. Driving system adaptation

The events described in the previous section stand as a template
for a family of useful and robust AAL services. Similar plans can be
activated whenever there is a mismatch between the output of the
Cognitive Layer and one of the events that are raised by an action of
the user. The system can be programmed to prompt the user when
something out of the ordinary is taking (or some user's routine is
not taking) place and may require her attention and/or further
instructions, thus ultimately helping the system to gather feedback
and gradually adapt its behaviour to the needs of its users.

In the remainder of this section, we show how a similar process
can be exploited to account for un-modelled user behaviors and
activities in the AAL application discussed above. Consider, for
instance, what would happen in the heart-monitoring example if
our user injures herself and is instructed by her doctor to perform
a rehabilitation activity in place of her usual exercise routine, in
order to accelerate her recovery. The resulting activation of sensor
readings will now be new to the Learning Layer. The user's
rehabilitation routine is considerably different from her previous
exercise, shown in Fig. 6, as the user's movements are different
(causing different readings from the accelerometer on her wrist)
and the user performs her rehabilitation routine in a different
position (e.g. sitting on the sofa instead of standing in front of the
TV). This will result in events being presented to the Cognitive
Layer with a lower confidence than is usually expected. Conse-
quently, the system might stop to help the user just when the user
needs it the most!

Our final aim is to take advantage of the layered architecture
described in Section 3 to determine when a change in user routine
becomes incorporated into the reasoning system. To this end, the
Incremental Learning mechanisms described in Section 3.1
empower the ecology with a dynamic memory formation process
that can be exploited to learn to account for new user habits,
activities and situations. This can have the effect to further
relieving the ecology from the need of human supervision, allow-
ing it to self-cater the training information needed to acquire
knowledge on the novel situations. In our reports (e.g. in Bacciu et
al.,, 2014a) we have described how the incremental learning
functionalities in the Learning Layer can be exploited by the
Control Layer to learn un-modelled context-dependent plan-
selection policies.
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Fig. 6. Extract from the video attached as supplemental material. From top left, clockwise: user exercising; user relaxing; robot approaching and reminding the user to
measure her heart rate; user using the pulsometer after she fetched and opened the pulsometer's box from the table.

To further validate these mechanisms in our example AAL scenario,
we have implemented a novelty detection feature inspired by cogni-
tive models of habituation of neural responses and synaptic decay.
This is implemented within the Cognitive Layer through a three tiered
system. The first tier searches all active incoming events for synchro-
nous activity groups and assigns them to the suspected event tier if they
are recorded at lower confidences than expected. Over time, new
groups are promoted to the potential event tier, and, eventually,
recognized as new events. The progression over these three stages is
represented by the dashed lines in Fig. 7, where it is superimposed to
the output of the Learning Layer in one live episode in which the user
was carrying out her rehabilitation exercise.

Upon recognition of a new event, the Cognitive Layer notifies
the system with the timings of all the instances in which such an
event occurred in the past.

At this point, the Control Layer invokes the Learning Layer's
mechanisms to, respectively:

1. initialize a new HAR learning task corresponding to the newly
detected user activity;

2. notify an approximated indication of the sensory sources that
should be considered as candidate inputs for the new learning
task (these are simply the union of the sensor sources that
were used by the Learning Layer to detect the events grouped
by the first tier of the novelty detection, i.e. the user relaxing
and user exercising events in our example);

3. train the Learning Layer by exploiting the information on new
event timings and associated sensory sources to assemble
appropriate training datasets. Noticeably, through its built-in
feature selection mechanisms, the Learning Layer can refine the
preliminary superset of sensor sources by extracting a subset of
non-redundant and highly-predictive inputs relevant for learn-
ing the new task.

After this re-training, the Learning Layer will produce a new
output event that will present with high confidence whenever the
user will engage in the new activity. As shown in Fig. 8, the

Rehabilitation exercise has now been added to the detectable
range of events processed via the Learning Layer and as a result of
this, the Cognitive Layer has also added it as one of its inputs.

Noticeably, at this point the Control Layer may also be
instructed to ask the user what she is doing. This may help the
system to give an actual label to the new activity (Rehabilitation)
but it is irrelevant to how that event will be treated in the future.
The system can now use the new event in its cognitive reasoning,
which will ultimately lead to the restoration of its ability to assist
the user.

4.2. Dynamic planning

The final experiment we describe was designed to show the
operation of the system now able to recognize and process the
new event, together with its ability to react to contingencies and
reason about dynamic situations.

Specifically, the experiment shows the ability of the configura-
tion planner presented in Section 3.3 to consider multiple goals, as
well as its ability to reason about resources and times.

In this experiment, the robotic ecology employs two robots,
each equipped with a vacuum cleaner and with a container where
the user can place little objects for the robot to carry, such as a box
with her pills or with the pulsometer. We have also added two
additional constraints to the planning domain: The first constraint
states that only the robot carrying the box with the pulsometer
should go close to the user when the Control Layer is instructed to
do so by the Cognitive Layer. In a real application, such a constraint
could be supported by placing an RFID tag on the box and by
employing an RFID reader on the robot to inform it when it is
carrying the box in its tray. The second constraint is used to enable
the two robots to coordinate their movements in the apartment.
Specifically, since there is not space for two robots to negotiate at
the same time the narrow space between the sofa and the wall,
the area connecting the livingroom to the kitchen is modelled by
the planner as a single resource that cannot be accessed concur-
rently by two robots.
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Fig. 7. (a) Exercising and (b) Relaxing events pertaining to the rehabilitation exercise with the associated (c) habituation values of the potential event leading to its discovery.
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Fig. 8. Example output of the learning layer while the user performs a sequence of rehabilitation and relaxation activities. The diagrams shows the outputs for known events
(exercising and relaxing) prior to the novelty detection, and the novelty-detected rehabilitation event after the learning layer has adapted.

Fig. 9 shows a sequence of pictures (extracted from the last
phase of the video) starting from a situation in which the first
robot is cleaning the kitchen while the user is relaxing after her
rehabilitation. Note the difference between the user's rehabilita-
tion routine and her previous exercise, shown in the first scenes of
the same video.

After the user stops her rehabilitation routine, the Cognitive
Layer instructs the Control Layer to bring the box with the
pulsometer to the user.

Since the robot cleaning the kitchen is also currently carrying the
box with the pulsometer when the Cognitive Layer raises the heart
monitor goal, the Control Layer's planner has to find a way to (i) use

that specific robot to prompt the user as soon as possible (and in the
process bringing the pulsometer to the user, who is currently indis-
posed), while (ii) also completing the cleaning task (which is still far
from completion at the moment the heart monitoring goal is issued).

Fig. 10 and the accompanying video show how the planner solves
this problem by re-allocating the cleaning task, i.e. asking the second
robot (previously idle) to go to clean the kitchen, while the first robot,
now relieved of its cleaning duty, is asked to move to the living room
and approach the user. However, rather than instructing both robots at
the same time, the planner successfully orchestrates their movements
to resolve their use of the single resource representing the narrow
passage. Firstly, the planner instructs the first robot to dispense the
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2

Fig. 9. Extract from the video attached as supplemental material, showing the task re-allocation between the two robots after the system has recognized the need to bring
the pulsometer to the user. From top left, clockwise: robot 1 cleaning the kitchen (in the top right corner); robot 1 moving toward the living-room; robot-2 moving to the
kitchen while the user collects the pulsometer from robot-1; robot-2 taking over the cleaning duty in the kitchen while the user uses the pulsometer.

heart monitoring tool, since its task has a tighter deadline. Secondly,
the planner instructs the second robot to go to the kitchen and take
over the cleaning task. A graphical representation of the activities of
the planner are superimposed to the final scene of the video.

5. Discussion

Thanks to an adaptive, open and general purpose learning
infrastructure and its innovative combination with online novelty
detection functionalities, a RUBICON system can more easily adapt
to evolving situations and achieve useful services that are not
restricted to only those situations that are envisioned by their
designer. Successful goals and novel events are absorbed into the
cognitive model which shows an ability to evolve and grow to
accommodate and account for new situations.

Such a process allows the system to be driven by using easily
identifiable rules, while delegating, over time, symbolic reasoning
to data-driven inference for the purpose of increasing flexibility,
robustness and adaptation.

This is a clear improvement on past solutions, which demanded
for all context and goal rules to be specified a priori.

To the best of our knowledge, the integration approach discussed
in this paper constitutes a novel way to design adaptive robotic
ecologies by extending plan-based control mechanisms with a
combination of machine learning methods for context recognition,
and cognitive reasoning for goal deliberation and novelty detection.

A useful characteristic of such an integrated solution is its clear
distinction between (i) events, ie, the result of the activity and
context recognition process performed by the Learning Layer on the
basis of raw sensor data, (ii) goals, i.e. the result of the cognitive
reasoning performed by the Cognitive Layer on the basis of the
events originated by the Learning Layer, and (ii) plans describing the
configuration and coordination strategies activated and supervised
by the Control Layer to achieve the goals set by the Cognitive Layer.

Our implementation is an instance of such a modular design,
whereas each component may be replaced with possible alter-
native implementations covering similar roles.
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Fig. 10. The final plan, which is refined by the scheduler to make sure that the
robots will not have to traverse the narrow space between the wall and the wall at
the same time (they both consume a resource of capacity one).

While it has been tested in a limited scenario, the two-layer
interaction between the Learning and Cognitive layers implemented
in RUBICON has shown a promising direction toward which to
advance the results of past attempts that have integrated activity
detection with pattern discovery functionalities in the same applica-
tion domain. Compared to those methods, which were discussed in
Section 2, our system has the ability to account for heterogeneous
and noisy sensor data and can leverage a rich selection of both binary
and non-binary sensors while performing online novelty detection
and reasoning on context and automation patterns.

However, the goal of our work is not the classification of all
users' behavioural patterns, but only those whose prompt detec-
tion can facilitate the robotic ecology in assisting its users. Indeed,
as (Wan et al, 2014) also notes, seeking to recognize every
possible activity can be overly complex, and may also be perceived
by home occupants as unacceptably compromising to their priv-
acy. The only activities of interest are those that the occupant
undertakes which undermine their capability to function inde-
pendently. The integration approach discussed in this paper shows
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a way to do just that, by starting from a system trained to
recognize simple events, and by letting it learn, over time, to
recognize and adapt to evolving situations. In this concern, the
Incremental Learning mechanisms implemented in the Learning
Layer (see Section 3.1) provide the RUBICON system with the
ability to deal with environmental changes by allowing re-training
on existing computational tasks, whenever a significant environ-
mental change is identified by the Cognitive Layer.

Noticeably, the effect of this process is similar to what is
achieved by approaches addressing the concept drift problem
(Widmer and Kubat, 1996) in activity classification, as in (Kurz
and Ferscha, 2010). Concept drift addresses slow changes in the
mapping between sensor signals and activity classes in the feature
space. Usually, this is achieved by monitoring drift over time, and
by triggering either (i) a re-calibration of the learning system (e.g.,
by adjusting the parameters of the classifier), or (ii) a complete re-
training (by taking advantage of many repetitive occurrences of
context in daily life). The solution implemented with the interac-
tion between the Cognitive and the Learning layers described in
Section 4.1 is an example of the latter. However, in our architecture
the same approach is used both to account for changes in known
activities corresponding to already trained learning module, and
also for discovering new activities for which the learning system
had not received supervised training information.

In addition, activity classification is a by-product of our
approach: new events are internalized and detected by a distrib-
uted learning network. They may not exactly match with recog-
nizable users' activities, but the outcome is a system that can
successfully adapt to new user habits and changing user needs.

Supporting heterogeneous and distributed systems and varying
computational constraints has been a cross-cutting concern
addressed in each of the solutions described in this paper. This was
an important requirement, which is not met by the centralized
solutions traditionally used in smart environments, as robotic ecol-
ogies may contain devices such as computers with large processing
and bandwidth capacities, as well as much simpler devices such as
micro-controller-based actuators and sensor nodes, and even devices
with no (customizable) computational capability at all, such as Radio
Frequency Identifications (RFIDs). Sensor data in a cognitive robotic
ecology is processed as much as possible locally on computational
constrained and robotic devices. Information (e.g. goals) is extracted
and exploited by the higher layers. These are equipped with bigger
computational capabilities, which they exploit to deliberate and
supervise the execution of complex tasks.

Our approach may inspire similar advancements in similar
technical domains. In particular, the Robotic Ecology vision shares
many similarities with the one pursued within the CSP and IoT
communities: the ideal aim in all those fronts is that arbitrary
combinations of devices should be able to be deployed in unstruc-
tured environments, such as those exemplified in a typical house-
hold, and therefore, efficiently cooperate to the achievement of
complex tasks. A widespread solution in IoT system is to deploy
high-level, rule-based reasoning modules on cloud-based infra-
structures. However, systems that need to close the loop between
analysis and control may find it useful to implement a similar
approach to the one implemented in RUBICON, and combine high-
level, cloud-based system intelligence with data processing and
learning functionalities deployed on each device.

6. Conclusions and future work

This paper has highlighted the challenges in endowing robotic
ecologies with cognitive capabilities, and has illustrated the
general principles underlying the construction of self-adaptive
robotic ecologies.

We have shown how adaptive, and proactive system behaviour
can be obtained by exploiting: (i) a learning infrastructure to
extract meaning from noisy, imprecise and heterogeneous sensed
data, (ii) cognitive reasoning capabilities to learn what service
goals to pursue, and (iii) advanced planning solutions that are able
to reason upon different objectives, resources, and dynamic situa-
tions. Furthermore, this paper has shown how the dynamic
acquisition and modelling of new events can also be implemented
as an interlayer cooperative process.

All our solutions have been purposefully designed to be as
open, flexible and extensible as possible. Key components of our
software suite can already be downloaded from our project
website (http://www.fp7rubicon.eu, 2014).

These components can be applied, either in the fully integrated
form presented in this paper, or by using only selected combina-
tions, as we have shown in (Bacciu et al, 2014a). This has the
potential to drive the adaptation of many existing smart environ-
ment scenarios, and also to inform the development of similar
integrated approaches.

However, more work is needed to improve the usability and
manageability of this type of integrated solutions. Building actual
AAL applications requires many researchers to program each part
of the system using domain-specific languages and research-
oriented software and tools, before systems prototypes can be
evaluated. In addition, setting up each system still requires a
degree of manual configuration, for instance, to identify narrow
passages in the environment that must be considered as a single
resource by the configuration planner. The issue of whether this
configuration could also be automated, for instance, as part of
autonomous exploration and mapping of the environment, is still
an open research question. Its resolution would be an important
step toward allowing fully autonomous systems able to adapt to
the settings where they are installed.

Moreover, further work needs to be directed towards improv-
ing both the efficiency of these solutions and the user's experience
when dealing with them, in order to enable us to carry out long-
term evaluations with real users in their own homes. To this end,
the interplay between the different components composing a
cognitive robotic ecology provides flexible mechanisms, which
can be used to define, at run-time, new learning requirements, and
can adapt to changes in the settings of the ecology or to newly
discovered situations and users' activities. These mechanisms may
be used by both internal ecology components - as in our examples
- as well as by external components, such as user interfaces. These
may be used to provide feedback to the learning system, to drive
its smooth adaptation to user preferences, but also to verify and
possibly accelerate its ability to adapt to novel situations. The
research question in this case is how to find ways for the human to
meaningfully interact with an opaque system that sometime may
incorporate concepts that do not correspond to recognizable
activities. Future work should explore scenarios in which users
and cognitive robotic ecologies collaborate and learn to exploit
their different capabilities to their mutual benefit.

7. Supplementary data

Supplementary data associated with this article can be found in the
online version at http://dx.doi.org/10.1016/j.engappai.2015.07.004.
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